загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

, с одним или неск. шпинделями. С.г., устанавливаемые на многошпиндельных и агрегатных сверлильных станках, могут иметь шпиндели, располагаемые жёстко (применяются в массовом производстве), и шпиндели, которые можно фиксировать в том или ином заданном положении (применяются в серийном производстве).

СВЕРЛИЛЬНЫЙ СТАНОК, станок для обработки отверстий со снятием стружки. На С. с. производят сверление, рас-сверливание, зенкерование, развёртывание, растачивание, нарезание резьбы. Различают следующие типы С. с. по металлу: вертикально-сверлильные, горизонтально-сверлильные, центровальные, многошпиндельные, агрегатные, специализированные и др.

Вертикально - сверлильный станок (рис. 1) - наиболее распространённый тип С. с. в металлообработке; используется для получения отверстий в деталях относительно небольшого размера в условиях индивидуального и мелкосерийного произ-ва, в ремонтных цехах и т. п. Инструмент (сверло, зенковка, развёртка и др.) закрепляют в вертикальном шпинделе, деталь - на столе станка. Совмещение осей обрабатываемого отверстия и инструмента производят перемещением детали. Для ориентации заготовки и автоматизации обработки применяют также программное управление. Для обработки отверстий диаметром до 12 мм (напр., в приборостроении) используют настольные станки (обычно од-ношпиндельные). Тяжёлые и крупногабаритные детали, а также детали с отверстиями, расположенными по дуге окружности, обрабатывают на радиальносверлильном станке. На этом С. с. совмещение осей обрабатываемого отверстия и инструмента осуществляют перемещением шпинделя относительно неподвижной детали. Горизонтально-сверлильный станок обычно используют при обработке глубоких отверстий (напр., в осях, валах, стволах стрелковых и артиллерийских систем и т. п.).


Рис. 1. Вертикально-сверлильный станок.


Рис. 2. Многошпиндельный сверлильный станок.

Центровальные станки служат для получения в торцах заготовок центровых отверстий. Иногда центровальные станки оснащаются отрезными суппортами с резками для отрезки заготовки перед центрованием (центровально-отрезной станок). Для одновременной обработки (гл. обр. сверления) неск. отверстий применяют многошпиндельные С. с. (рис. 2) со сверлильными головками. Процесс обработки автоматизирован на агрегатных С. с., которые собирают из стандартных самодействующих силовых головок с фланцевыми электродвигателями и редукторами, обеспечивающими вращение шпинделя и подачу головки. Существуют агрегатные С. с. одно-, двух-и трёхсторонние, с вертикальными, горизонтальными и наклонными сверлильными и резьбонарезными шпинделями, число к-рых иногда достигает неск. десятков в одном станке. Специализированные С. с., на к-рых выполняют ограниченный круг операций, снабжены различными автоматизированными устройствами. Для комбинированной обработки деталей применяют станки: свер-лильно-расточные (одно- и двухсторонние), сверлильно-нарезные (обычно многошпиндельные, с реверсированием резьбонарезных шпинделей), сверлильно-фре-зерные и сверлильно-долбёжные (гл. обр. для деревообработки), сверлильные автоматы. Д. Л. Юдин. В деревообработке получили распространение одно- и многошпиндельные вертикальные, одно- и двухсторонние гл. обр. многошпиндельные горизонтальные С. с. и станки с поворотным шпинделем, к-рый может располагаться вертикально и горизонтально. На деревообрабатывающих станках, кроме сверления отверстий, получают пазы, гнёзда, удаляют сучки и т. п. В. С. Рыбалко. Лит. см. при статьях Металлорежущий станок, Деревообрабатывающий станок.

СВЕРЛО, режущий инструмент для получения отверстия сверлением или увеличения его диаметра при рассверливании. В металлообработке различают С. по конструкции и назначению: винтовые (спиральные) универсальные; для получения глубоких отверстий (одно- и двухстороннего резания); центровочные (для обработки центровых отверстий). Наиболее распространённое винтовое С. представляет собой стержень (рис. 1) с рабочей частью, имеющей режущие элементы - главные режущие кромки, вспомогат. режущие кромки (кромки-ленточки) и поперечную кромку, и хвостовиком, к-рым С. крепится в шпинделе станка, патроне или сверлильной головке.

Рабочая часть выполняется с равномерной обратной конусностью -0,03-0,12 мм на 100 мм длины С. Изготовляют также С. спец. конструкций - без поперечной кромки, с особой заточкой, со стружкоразделит. канавками. Стандартные винтовые С. имеют диаметр от 0,25 до 80 мм. В зависимости от свойств обрабатываемого материала, режима резания и материала режущей части С. применяют пять различных форм заточки режущей части (рис. 2). Осн. нормируемые геометрич. параметры винтовых С. (рис. 3): угол наклона винтовых канавок со, угол при вершине 2 фи, угол наклона поперечной кромки пси, задний угол а, передний угол y(гамма) Для всего диапазона диаметров С. принимают со = 18-30°, 2фи = 80-140°, пси = 47-55°, a = 8-14°, tg-y = tgw(омега)/sin фи -dr/D, где dr - диаметр режущей части С. в точке, для к-рой определяется угол. Режущая часть С. изготовляется из быстрорежущих сталей и твёрдых сплавов или композитных материалов; хвостовики делают из сталей 45, 40Х (при режущей части из быстрорежущей стали) и сталей ХС, 40Х, 45Х (при режущей части из твёрдых сплавов или композитных материалов). Д. Л. Юдин.

Рис. 1. Винтовое сверло по металлу.

Рис. 2. формы заточки сверла по металлу: а - одинарная,или нормальная; б - одинарная с подточкой поперечной кромки; в - одинарная с подточкой поперечной кромки и ленточки; г - двойная с подточкой поперечной кромки; д -двойная с подточкой поперечной кромки и ленточки.

Рис. 3. Углы винтового сверла по металлу.

Рис. 4. Свёрла для обработки древесины и древесных материалов: а - спиральное с направляющим центром и подрезателем; б - цилиндрическое полое с выталкивателем (для высверливания пробок); в -для кольцевого сверления.

В деревообработке наряду со С. с конич. заточкой применяют спиральные С. с направляющим центром и подрезателями, С. для кольцевого сверления, С. полые с выталкивателем и др. (рис. 4). Наиболее распространены спиральные С. Для спиральных С. w(омега) = = 22-30°, 2 фи при сверлении перпендикулярно волокнам древесины составляет 120°, при сверлении вдоль волокон -60-80°, а = 20-30°. Для уменьшения усилий резания спиральных С. с направляющим центром и подрезателями высота подрезателей h принимается не более макс, подачи. Обычно h = 0,8-2 мм, а высота направляющего центра - 3,5-8,5 мм.

С. изготовляют из инструментальной стали Х6ВФ или из быстрорежущей стали Р6М5. Для сверления древесностру-жечных и древесноволокнистых плит, фанерованных щитов и др. древесных материалов используют С., оснащённые пластинками и коронками из твёрдых сплавов. В. С. Рыбалко.

Лит.: Грубе А. Э., Дереворежущие инструменты, 3 изд., М., 1971. См. также лит. при ст. Металлорежущий инструмент.

СВЕРЛЯЩИЕ ГУБКИ, клионы (Clionidae), семейство из отряда четырёх-лучевых губок. С. г. способны проделывать извилистые ходы в твёрдом известковом субстрате. Встречаются обычно на мелководье в тёплых и умеренных морях. Ок. 20 видов. В СССР обнаружены в Японском, Чёрном, Белом и Баренцевом морях. Полагают, что механизм сверления С. г. состоит в одновременном воздействии на субстрат двуокисью углерода, выделяемой отдельными поверхностными клетками губки, и механич. усилий, развиваемых этими клетками. С. г.- опасные вредители устричных банок: поселяясь на раковинах устриц и проделывая в них ходы, они вызывают т. н. пряничную болезнь устриц, приводящую к их гибели. Одно из средств борьбы - кратковременное погружение поражённых устриц в пресную воду.


Раковины устриц, поражённые сверлящей губкой: 1 - на поверхности раковины видны отверстия, просверлённые губкой; 2 - часть верхнего слоя раковины удалена, видны ходы, проделанные губкой.


СВЕРЛЯЩИЕ ЖИВОТНЫЕ, морские беспозвоночные животные, способные протачивать ходы или углубления в древесине, скалах, коралловых рифах и даже в железных сваях (морской ёж Stron-gylocentrotus purpuratus). Морские древоточцы: гл. обр. двустворчатые моллюски сем. терединид - корабельный червь и ксилофаги из сем. фоладид, рачки лимнория, сферома из отр. равноногих и хе-люра из бокоплавов, погонофоры Sclero-linum. Камнеточцы: двустворчатые моллюски мор. финик - литофага, мор. сверло - фолада и др., сверлящая губка -клиона, нек-рые многощетинковые черви из сем. спионид, усоногий рачок литотрия, нек-рые морские ежи. Брюхоногие моллюски насса и натика просверливают отверстия в раковинах моллюсков, к-рыми питаются. Мн. С. ж. причиняют большой вред, разрушая подводные части деревянных судов, сваи и др. подводные сооружения.

СВЕРРИР Сигурдарсон (Sverrir Sigurdarsson), Сверре Сигурд-сон (Sverre Sigurdsson) (ок. 1150-9.3.1202, Берген), норвежский король в 1184-1202. Священник с Фарерских о-вов, С., выдавая себя за незаконного сына норв. короля Сигурда Мунна, возглавил в 1177 движение оиркебейнеров. Разбив воен. силы своих противников (короля Магнуса Эрлингсона, к-рого поддерживали крупные землевладельцы и епископат), захватил престол. Папство заняло враждебную С. позицию, он был отлучён от церкви (1198). Опираясь на новый слой служилых людей, С. укрепил королев. власть. Подавлял крест. восстания.

СВЕРТАШКИ (Anilius), род пресмыкающихся сем. вальковатых змей. 1 вид -коралловая С. (A. scytale); встречается в тропич. Америке. Окраска -на кораллово-красном фоне многочисленные чёрные поперечные полосы. Дл. тела до 80 см. Ведёт роющий образ жизни. Питается слепозмейками, дождевыми червями и личинками различных членистоногих. Живородяща.

Коралловая сверташка.


2306.htm
CBETOBЫE ЭТАЛОНЫ, меры для воспроизведения, хранения и передачи световых единиц. В качестве С. э. в разное время применялись: пламя свечи или лампы с заданными характеристиками (размеры пламени, топливо и пр.); 1 см2 поверхности платины при темп-ре затвердевания; электрич. лампы накаливания. Различают первичный и вторичные С. э. Первичный С. э. единицы силы света - канделы, постоянный и воспроизводимый на основе законов теплового излучения, осуществлён в виде обладающего свойствами абсолютно чёрного тела т. н. полного излучателя (см. рис.) при темп-ре затвердевания платины: огнеупорная трубочка погружена в металл, расплавляемый токами высокой частоты. Этот С. э. разработан в США, принят по междунар. соглашению 1 янв. 1948 и осуществлён в 8 нац. лабораториях. Его яркость 6х105кд/м2, междунар. согласованность ок. ±0,6% при внутрилабораторной погрешности ±0,2%. Вторичные С. э. для единиц силы света, освещённости и для единицы светового потока представляют собой группы светоизмерит. ламп накаливания различного устройства и разной цветовой температуры. В. Е. Карташевская.

Устройство первичного светового эталона: 1 - трубка из плавленой окиси тория ThO2, темп-pa к-рой поддерживается равной темп-ре затвердевания платины 2042 К; 2 - тигель из плавленой ТhО2 с химически чистой платиной 3; 4 - кварцевый сосуд с засыпкой 5 из ThO2; 6 -смотровое окно; 7 - призма полного внутреннего отражения; 8 - объектив, создающий изображение светящегося отверстия излучателя на диффузной белой пластинке 10; сдругой стороны пластинка 10 освещается лампой сравнения 11; 9 - диафрагма. Платина в тигле разогревается токами высокой частоты в индукционной печи (темп-pa плавления ThО2 выше 2042К). Меняя расстояния между светомерной головкой, полным излучателем и лампой сравнения, добиваются уравнивания освещённостей на двух сторонах пластинки 10. Последнюю часто заменяют фотоэлементом, освещаемым попеременно первичным и вторичным световыми эталонами.

СВЕТОГОРСК (до 1948 -Энсо), город в Выборгском р-не Ленинградской обл. РСФСР. Расположен на р. Вуокса, близ границы с Финляндией. Ж.-д. станция в 196 км к С.-З. от Ленинграда. ГЭС. Целлюлозно-бум. комбинат.

СВЕТОДАЛЫНОМЕР, см. Дальномер, Электрооптический дальномер.

СВЕТОЗАРЕВО (до 1946 -Ягод ина; переим. в честь Светозара Марковича), город в Югославии, в Социалистич. Республике Сербии, на р. Белица, притоке Моравы. 29 тыс. жит. (1972). Пищ. пром-сть (сах., овоще-фруктоконсервная, мясная и пивоваренная). Произ-во кабеля, инструмента и электротехнич. изделий; меб., кирпично-керамич. предприятия. Машиностроительно-электротехнический факультет Белградского университета .

СВЕТОИЗЛУЧАЮЩИЙ ДИОД, светодиод, полупроводниковый прибор, преобразующий электрич. энергию в энергию оптич. излучения на основе явления инжекционной электролюминесценции (в полупроводниковом кристалле с электронно-дырочным переходом, полупроводниковым гетеропереходом либо контактом металл - полупроводник). В С. д. при протекании в нём постоянного или переменного тока в область полупроводника, прилегающую к такому переходу (контакту), инжектируются избыточные носители тока - электроны и дырки; их рекомбинация сопровождается оптич. излучением. С. д. испускают некогерентное излучение, но, в отличие от тепловых источников света,- с более узким спектром, вследствие чего излучение в видимой области воспринимается как одноцветное. Цвет излучения зависит от полупроводникового материала и его легирования. Применяются соединения типа AIII Bv и некоторые другие (например, GaP, GaAs, SiC), а также твёрдые растворы (напр., GaAs1-xPx, AlxGa1-xAs, Ga1-xInPx). В качестве легирующих примесей используются: в GaP-Zn и О (красные С. д.) либо N (зелёные С. д.), в GaAs-Si либо Zn и Те (инфракрасные С. д.). Полупроводниковому кристаллу С. д. обычно придают форму пластинки или полусферы.

Яркость излучения большинства С. д. находится на уровне 103 кд/м2, у лучших образцов С. д.- до 105 кд/м2. Кпд С. д. видимого излучения составляет от 0,01% до неск. процентов. В С. д. инфракрасного излучения с целью снижения потерь на полное внутреннее отражение и поглощение в теле кристалла для последнего выбирают полусферич. форму, а для улучшения характеристик направленности излучения С. д, помещают в пара-болич. или конич. отражатель. Кпд С. д. с полусферич. формой кристалла достигает 40%.

Пром-сть выпускает С. д. в дискретном и интегральном исполнении. Дискретные С. д. видимого излучения используют в качестве сигнальных индикаторов; интегральные (многоэлементные) приборы - светоизлучающие цифро-знаковые индикаторы, профильные шкалы, многоцветные панели и плоские экраны -применяют в различных системах отображения информации (см. Отображения информации устройство), в электронных часах и калькуляторах. С. д. инфракрасного излучения находят применение в устройствах оптической локации, оптической связи, в дальномерах и т. д. (см. также Оптоэлектроника), матрицы таких С. д. - в устройствах ввода и вывода информации ЭВМ. В ряде областей применения С. д. конкурирует с родственным ему прибором - инжекционным лазером (см. Полупроводниковый лазер), к-рый генерирует когерентное излучение и отличается от С. д. формой кристалла и режимом работы.

Лит.: Б е р г А., Дин П., Светодиодьг, пер. с англ., "Тр. Ин-та инженеров по электротехнике и радиоэлектронике", 1972, т. 60, № 2. П. Г. Елисеев.

СВЕТОКОПИРОВАЛЬНАЯ БУМАГА диазотипная, диазобумага, бумага, покрытая с одной стороны (реже с двух) тонким слоем светочувствит. вещества на основе диазосоединений (ДС). Применяется при диазотипном светокопировании (диазокопировании), осуществляемом в светокопировальных аппаратах. Процесс получения видимого изображения на С. б. протекает в два этапа: экспонирование, при к-ром в светочувствит. слое образуется неустойчивое позитивное изображение - участки с неразложившимися ДС под непрозрачными местами оригинала; проявление - превращение неразложившихся ДС в устойчивые к свету азокрасители (чёрного, коричневого, красного, оранжевого, синего или фиолетового цвета).

По составу светочувствит. слоя различают С. б. однокомпонентную, содержащую только ДС (её проявляют в водных растворах азосоединений -"мокрым" способом); двухкомпо-н е н т н у ю, содержащую и диазо-, и азосоединения (проявление - "сухое", обычно в парах аммиака); термопроявляющуюся, содержащую, помимо диазо- и азокомпонентов, соединения, к-рые при нагревании выделяют вещества, необходимые для проявления ("горячее" проявление). С. б. выпускают преим. в рулонах длиной от 20 до 100 м при ширине от 0,3 до 1,2 м. Кроме диазо-бумаги, выпускают диазокальку на светопроницаемой бумажной основе для изготовления дубликатов и промежуточных оригиналов. С. Р. Гаевская.

СВЕТОКОПИРОВАЛЬНЫЙ АППАРАТ, диазокопировальный аппарат, средство оргтехники, применяется для оперативного копирования и размножения документов (преим. чертежей) на основе диазотипии. Технологич. процесс получения светокопий осуществляется в 2 этапа: экспонирование и проявление. В большинстве С. а. экспонирование производится контактным способом "на просвет": прозрачный или полупрозрачный оригинал (напр., кальку) с односторонним изображением накладывают на светочувствит. слой диазоматериала (ДМ) и подвергают интенсивному ультрафиолетовому облучению, вследствие чего на ДМ получается скрытое изображение. Экспонированный ДМ проявляют "сухим", "мокрым" или "горячим" способом (в зависимости от типа ДМ). С. а. классифицируют по способу обработки ДМ - аппараты "сухого", "мокрого" и "горячего" проявления; по конструктивному исполнению - стационарные и настольные, с рулонной и листовой подачей ДМ, с отд. проявочным устройством и совмещённые; по степени автоматизации-полуавтоматические и автоматические; по оснащённости вспомогат. устройствами -агрегатированные с бумагорезальным, листоподборочным и фальцевальным оборудованием и неагрегатированные.

Как правило, экспонирование в С. а. осуществляется при перемещении оригиналов в контакте с ДМ вокруг прозрачного цилиндра, внутри к-рого помещены источники ультрафиолетового излучения, напр, ртутно-кварцевые лампы (рис. 1, а). Движение ДМ обеспечивается лентопротяжным устройством (транспортёром). Экспонированные ДМ поступают в проявочное устройство. Однокомпонентные ДМ проявляют "мокрым" способом с применением щелочных растворов (рис. 1, б). Такие С. а. чаще всего выполняют настольными, они не нуждаются в спец. вентиляции и могут быть установлены непосредственно в рабочем помещении конструкторов или в канцелярии; таковы, напр., С. а. типа СКМ-22 (рис. 2), изготовляющий светокопии на рулонной диазобумаге шириной до 460 мм при скорости движения ленты 0,5-5,5 м/мин, и настольный конторский С. а. (рис. 3), позволяющий получать копии на листах размером 210X297 мм (формат А4).

Рис. 1. Схемы узлов светокопировальных аппаратов, а - экспонирующее устройство: / - рулон диазобума-ги, 2 - подача оригинала, 3 - светоотражатель, 4 -приёмный лоток для использованных оригиналов, 5 - экспонированный диазо-материал, 6 - стеклянный цилиндр, 7 -ртутно-кварцевые лампы, 8 - лента транспортёра; б - устройство для "мокрого" проявления: / - ванна с щелочным раствором, 2 - направляющие, 3 - экспонированный диазоматериал, 4 - отжимающие валики, 5 - сушильное устройство; в -устройство для "сухого" проявления: 1 -проявленный диазоматериал, 2 - труба подачи аммиака, 3 - решётка, 4 - жёлоб, 5 - корпус, 6-нагревательные элементы.

Рис. 2. Малоформатный настольный рулонный светокопировальный аппарат СКМ-22 (СССР).

Рис. 3. Малогабаритный настольный конторский светокопировальный аппарат с листовой подачей бумаги (производительность до 8 копий в мин).

Двухкомпонентные ДМ проявляют "сухим" способом в парах аммиака (рис. 1, в). С. а. "сухого" проявления обычно выпускаются в стационарном исполнении, с рулонной подачей ДМ; скорость движения ДМ достигает 42 м/мин. Наиболее широко их применяют в проектно-конструкторских организациях; эти С. а. часто агрегатируют с резальным и листоподборочным устройствами (рис. 4). Термопроявляющиеся ДМ, содержащие не только диазо- и азокомпоненты, но и соединения, выделяющие при нагревании необходимые для проявления вещества со щелочными свойствами, обрабатывают в нагревательном устройстве ("горячее" проявление). По конструкции С. а. "горячего" проявления аналогичны аппаратам "сухого" проявления.

К 1975 разработаны качеств, высокочувствит. ДМ, позволяющие использовать С. а. для копирования репродукционным способом, а также для получения дешёвых микрокопий.

Рис. 4. Автоматический агрегатированный конторский светокопировальный аппарат с листовой подачей бумаги и листоподборочным устройством (производительность до 50 копий в мин).

Благодаря повышению светочувствительности ДМ и их сенсибилизации не только к ультрафиолетовым, но и к зелёным лучам увеличилась скорость экспонирования (св. 50 м/мин), а также стало осуществимо проекционное диазокопирование с микрофильмов (в т. н. диазодубли-каторах).

Лит.: Бурцев В. В., К а п л а н Э. Б., Средства оргатехники. Справочник-каталог, М., 1971; Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973. А. В. Алфёров.

СВЕТОКОПИРОВАНИЕ диазотипное, диазокопирование, копировальный процесс, осн. на способности диазосоединений под действием света (ультрафиолетовых лучей) терять краскообразующее вещество. Светокопии (синьки) изготовляются в автоматич. и полуавтоматич. светокопировальных аппаратах на бумаге, кальке или плёнке, покрытой водным раствором диазосреди-нения. С. просто, экономично, надёжно и удобно, т. к. может производиться при естеств. (дневном) освещении (см. Диазокопирование).

СВЕТОКУЛЬТУРА растений, выращивание растений при искусств. освещении. Применяется для раннего выращивания рассады овощных культур, их зимней культуры (особенно в условиях Крайнего Севера), для выгонки цветочных растений, круглогодичной селекции и семеноводства растений при оптимальном световом режиме, а также в науч. целях. Искусств. освещением пользуются также в теплицах и оранжереях в зимние месяцы для удлинения короткого дня и восполнения слабого солнечного света. Впервые лампы (керосиновые) для выращивания растений применил (1868) рус. ботаник А. С. Фаминцын. В 20 в. амер. исследователь Р. Гарвей (1922) и сов. физиолог растений Н. А. Максимов (1925), вырастившие растения "от семени до семени" при искусств. освещении, использовали мощные лампы накаливания. В пром. С. используют лампы накаливания, люминесцентные, ксеноновые, ртутные и др. Для нормального роста и развития растения при искусств. освещении интенсивность излучения в физиологич. диапазоне (380-710 нм) должна составлять не менее 30-150 вт/м2 (в зависимости от вида или сорта растений); в спектре искусств. источника излучения должны отсутствовать ультрафиолетовые лучи (<300 нм). Для устранения избыточного кол-ва инфракрасных лучей, вызывающих перегрев растения, применяют водные экраны или снижают темп-ру воздуха в помещении. Существ, значение при С. имеют спектральный состав света, интенсивность радиации, длина фотопериода. Наилучший эффект С. достигается при использовании ламп, видимый спектр излучения к-рых близок к солнечному (напр., ксеноновые лампы). Ускоряя или задерживая развитие семян или плодов (в зависимости от спектральной и фотопериодич. чувствительности растений), можно получать высокие урожаи листьев (напр., у салата, листовой капусты), корнеплодов (напр., у редиса), плодов (напр., томатов) или семян (напр., зёрна яровой пшеницы). Макс. урожай может быть достигнут при длине дня 16-24 ч. См. также Фитотрон.

Лит.: К л е ш н и н А. Ф., Растение и свет. Теория и практика светокультуры растений, М., 1954; Вин Р. в а н дер, Мейер Г., Свет и рост растений, пер. с англ., М., 1962; М о ш к о в Б. С., Выращивание растений при искусственном освещении, 2 изд., Л.,^1966; Леман В. М., Культура растений при электрическом свете, М., 1971; Шульгин И. А., Растение и солнце, Л., 1973. И. А. Шульгин.

СВЕТОЛЕЧЕНИЕ, фототерапия (ог фото... и греч. therapeia - лечение), применение с леч. целью оптического излучения (инфракрасного, видимого и ультрафиолетового); раздел физиотерапии. При С. используют и естеств. излучение Солнца (см. Солнцелечение). Действие световой энергии на организм человека определяется её интенсивностью (мощностью источника и расстоянием до облучаемой поверхности), длительностью облучения и глубиной проникновения электромагнитных волн, к-рая зависит от длины световой волны; эта глубина наибольшая у инфракрасных и видимых лучей и наименьшая - у ультрафиолетовых. Покраснение кожи - эритема - может появиться через несколько минут после начала облучения (напр., инфракрасными лучами) или спустя скрытый (латентный) период (2-8 ч) при действии ультрафиолетовых лучей; степень реакции кожи зависит от её чувствительности на разных участках тела к различным лучам, от возраста, времени года и др. факторов; она может изменяться при нек-рых патологич. состояниях, приёме лекарств, веществ. Через 3-4 сут на месте облучения появляется загар.

Для С. применяют калорич. (тепловые) и люминесцирующие искусств. источники света. У калорич. источников (лампы накаливания, излучающие инфракрасные и видимые лучи, общие и местные электросветовые ванны, лампы Минина, инфракрасных лучей) количество и состав излучаемой энергии зависят от степени нагревания излучающего тела. К люминесцирующим источникам (излучение обусловлено электрич., химич. и др. процессами) относятся ртутно-кварцевые, люминесцентные эритемные и дуговые бактерицидные лампы.

Ультрафиолетовое облучение (местное или общее) применяют для компенсации ультрафиолетовой недостаточности, повышения сопротивляемости к различным инфекциям (напр., гриппу), как болеутоляющее и противовоспалит. средство при заболеваниях суставов, периферич. нервной (невриты, невралгии, радикулиты), мышечной (миозиты), дыхательной (бронхиты, плевриты) систем, при кожных, гинекологич. заболеваниях, нарушениях обмена веществ, нек-рых формах туберкулёза. В педиатрии этот вид С. используют для профилактики рахита, острых респираторных заболеваний, повышения защитных сил организма в межприступном периоде ревматизма, а в сочетании с противоревматич. медикаментозными средствами - ив острой фазе заболевания. Тепловые процедуры с применением видимых и инфракрасных лучей используют преим. как болеутоляющее и рассасывающее средство, гл. обр. при подострых и хронических воспалительных процессах, невралгиях и мышечных болях.

С. противопоказано при активной форме туберкулёза, новообразованиях, выраженной сердечной недостаточности, ги-пертонич. болезни 2-3-й стадии, резком истощении, повышенной функции щитовидной железы, заболеваниях почек с недостаточностью функции, а также при фотопатологии (т. е. заболеваниях, вызываемых светом).

Лит. см. при ст. физиотерапия.

Т. М. Каменецкая.

СВЕТОЛОВ, лов рыбы с помощью искусственного света. С. основан на свойстве многих рыб активно реагировать на излучение подводного или надводного источника. Напр., свет привлекает кильку, сайру, ставриду, сардину, а треску, тунца, акулу, угря отпугивает. Результаты С. зависят от биологич. факторов (напр., возраст рыбы), от условий внешней среды. (темп-pa воды, её прозрачность, фаза Луны и др.), от расположения и спектральной характеристики источника света и т. п. Изменяя яркость света, можно управлять поведением рыбы: собирать её или распугивать, переводить скопление от одной лампы к другой, приближать рыбу к источнику света и поднимать её к поверхности. Для этих целей используют лампы и люстры, прожекторы, световые буи, а также световые трассы, заграждения, гирлянды. При С. рыба захватывается конусными сетями, бортовыми подхватами, рыбонасосами. С помощью источников света повышается эффективность лова кошельковыми и ставными неводами, тралами и др. В основном для С. применяют лампы накаливания и люминесцентные лампы. В некоторых случаях, напр. на промысле сайры, используют голубой и красный свет. С. распространён в Японии, СССР и др. странах.

Лит.: Н и к о н о р о в И. В., Взаимодействие орудий лова со скоплениями рыб, М., 1973; Мельников В. Н., Биофизические основы промышленного рыболовства, М., 1973. А. Л. Фридман.

СВЕТОЛЮБИВЫЕ РАСТЕНИЯ, гелиофиты, растения, произрастающие на открытых местах и не выносящие длит. затенения; для нормального роста им необходима интенсивная солнечная или искусств. радиация. Взрослые растения более светолюбивы, чем молодые. К С. р. относятся как травянистые (подорожник большой, кувшинка и др.), так и древесные (лиственница, акация и др.) растения, ранневесенние - степей и полупустынь, а из культурных - кукуруза, сорго, сахарный тростник и др. С. р. имеют ряд анатомо-морфологич. и физиологич. особенностей: относительно толстые листья с мелкоклеточной столбчатой и губчатой паренхимой и большим числом устьиц. В клетках листа содержится от 50 до 300 мелких хлоропластов, поверхность к-рых в десятки раз превышает поверхность листа. По сравнению с теневыносливыми растениями листья С. р. содержат больше хлорофилла на единицу поверхности и меньше - на единицу массы листа. Характерный физиологич. признак С. р.- высокая интенсивность фотосинтеза. И. А. Шульгин.

СВЕТОМАСКИРОВКА, скрытие от наблюдения воздушного и наземного противника световых демаскирующих признаков войск, воен. объектов, а также промышленных р-нов и населённых пунктов и их имитация на ложных объектах. В целях С. внутреннего освещения зданий и др. объектов применяется маскировочное освещение, затемнение входов, окон и др. проёмов и отверстий шторами и др. устройствами. Для скрытия наружного освещения используются лампы малой мощности, при налёте авиации противника выключается освещение; сигнальные приборы и транспортные огни маскируются насадками, козырьками, экранами. См. Маскировка.

СВЕТОНИЙ Гай Транквилл (Gaius Suetonius Tranquillus) (ок. 70 - после 122), римский историк и писатель. Происходил из сословия всадников. Ок. 119-122 служил секретарём при имп. Адриане. Из многочисл. сочинений С. (историч., историко-бытовых и фнлологич.) целиком дошли до нас только "Жизнь двенадцати Цезарей" (в 8 кн.) и часть "О грамматиках и риторах" из большого труда, посвящённого знаменитым деятелям рим. лит-ры. "Жизнь двенадцати Цезарей" содержит жизнеописания рим. императоров от Цезаря до Домициана.

Все биографии построены по одному схематич. плану: последовательно описываются происхождение и молодость императора, его политич., воен., судебная деятельность, черты характера, внешность, образ жизни, обстоятельства смерти. Идеальными правителями С. изображает Августа и Тита. Изложение отличается подчёркнутой фактологич-ностью, С. не интересуют ни историч. причины, ни психологич. мотивы событий. Занимательность изложения способствовала популярности этого сочинения С. как у современников, так и в позднее время.

Соч. в рус. пер.: Жизнь двенадцати Цезарей. [О знаменитых людях. Фрагменты, пер. с лат. и прим. М. Л. Гаспарова], М., 1966.

Лит.: Гаспаров М. Л., Новая зарубежная литература о Таците и Светонии, "Вестник древней истории", 1964, № 1; S t е i d 1 е W., Sueton und die antike Biographic, 2 Aufl., Munch., 1963.

СВЕТОПРОВОД, то же, что световод.

СВЕТОСИЛА, величина, позволяющая сравнивать освещённости в плоскостях изображений различных оптич. систем. Без учёта потерь световой энергии на поглощение и отражение в оптич. системе С. (её наз. геометрической С.) есть квадрат относительного отверстия системы, т. е. (D/f)2, где D - диаметр входного зрачка системы (см. Диафрагма в оптике), f - её фокусное расстояние. Умножение геометрич. С. на коэфф. т, характеризующий потери, даёт физическую (или эффективную) С. Её повышают, уменьшая потери света с помощью просветления оптики. Освещённость Е в плоскости изображения осесимметричной оптич. системы есть отношение светового потока, прошедшего систему, к площади изображения и выражается формулой: Е = n{пи)Вtsin2и', где В - яркость объекта, и' - угловая апертура пространства изображений. Для достаточно (практически бесконечно) удалённых объектов плоскость их изображений совпадает с фокальной плоскостью (см. Фокус в оптике). В этом случае sinu' = D/2f, и для расчёта освещённости и, следовательно, С. получают соотношение E =n(пи)/4Bt(D/f)2.

Л. Н. Канарский.

СВЕТОСЛАВСКИИ Сергей Иванович [24.9(6.10).1857, Киев, -19.9.1931, там же], украинский живописец-пейзажист. Учился в Моск. уч-ще живописи, ваяния и зодчества у А. К. Саврасова (1875-83). Член товарищества передвижников (с 1891). Продолжая традиции рус. и укр. реалистич. пейзажа, С. писал лирич. виды (преим. сельской природы), нередко обогащая их жанровыми или анималистич. сценками и разрабатывая проблемы освещения с любовью к тонким колористич. эффектам ("К весне", 1887, Третьяковская гал., "Вечер в степи", 1905, Музей укр. изобразит. иск-ва УССР, Киев). Обращался также к гор. пейзажу ("Москва. Василий Блаженный", 1893, там же).

С. И. С в е т о с л а вс к и й. "Волы на пахоте". 1891. Музей украинского изобразительного искусства УССР. Киев.

Лит.: [Попова Л.], С. I. Светославський, [Киiв, 1960].

СВЕТОТЕНЬ, распределение светлых и тёмных зон на объекте, обусловленное формой и фактурой его поверхности, освещением и позволяющее зрительно воспринимать объём и рельеф. В живописи и графике С.- распределение различных по яркости цветов или оттенков одного цвета, позволяющее воспринимать изображённый предмет объёмным, окружённым свето-воздущной средой. Градации С. (от наибольшей яркости до глубокой тени) зависят от характера освещения, специфики объёмной формы предмета, его фактуры и состояния атмосферы. К возможностям С. прибегали уже антич. живописцы. С. и её теория разрабатывались мастерами Возрождения (особенно Леонардо да Винчи), и с этого времени С. широко использовалась художниками, в т. ч. как одно из средств, определяющих эмоциональную выразительность произведений.

СВЕТОТЕХНИКА, область науки и техники, предмет к-рой - исследование принципов и разработка способов генерирования, пространственного перераспределения, измерения характеристик оптич. излучения (света) и преобразования энергии света в др. виды энергии. С. охватывает также вопросы конструкторской и технологич. разработки источников света (ИС), осветительных, облуча-тельных и светосигнальных приборов и устройств, систем управления ИС, вопросы нормирования, проектирования, устройства и эксплуатации светотехнических установок. Кроме того, С. связана с изучением воздействия естеств. и искусств. света на вещество и живые организмы. Термин "С." в совр. широком понимании стал употребляться в науч. и технич. литературе с 20-х гг. 20 в. До этого содержание понятия "С." ограничивалось лишь вопросами освещения (см. Светильник).

Становление С. было связано с развитием физич. и геометрич. оптики, физиологии, учения об электричестве и магнетизме. Большое значение для формирования С. имели работы И. Ньютона, И. Ламберта, М. В. Ломоносова, Т. Юнга, В. В. Петрова, Я. Пуркине, Г. Гельмгольца и др. учёных - физиков, физиологов и электротехников. Фундаментальный вклад в С. был сделан в нач. 18 в. П. Бугером, сформулировавшим основы фотометрии (в книге ч Оптический трактат о градации света"). Важной вехой в развитии С. явился переход к электрич. ИС. В 1872 А. Н. Лодыгин создал лампу накаливания, к-рая в дальнейшем была усовершенствована Т. Эдисоном. В 1876 П. Н. Яблочков изобрёл дуговую угольную лампу (без регулятора расстояния между электродами) - т. н. свечу Яблочкова. Последующий прогресс в С. связан с разработкой люминесцентных ламп, газоразрядных ламп высокого давления (см. Газоразрядные источники света), галогенных ламп накаливания.

Работы по С. способствовали, в свою очередь, развитию электроники и становлению квантовой электроники.

В С., в соответствии с областями использования света, различают осветительные, облучательные и светосигнальные установки (и соответствующие световые приборы). Осветительные установки создают необходимые условия освещения, к-рые обеспечивают зрит. восприятие (видение), дающее ок. 90% информации, получаемой человеком от окружающего его предметного мира. В СССР на искусств, освещение расходуется 10-12% вырабатываемой электроэнергии (установлено ок. 650 млн. световых точек); в США - 18%.

Облучат. установки используют для различных незрит. воздействий на человека, животных и растения, а также в разнообразных производственных процессах. Облучение живых организмов ультрафиолетовым (УФ), видимым и инфракрасным (ИК) светом улучшает (или обеспечивает) жизненно важные морфофункциональные процессы, такие, как обмен веществ, кроветворение, регуляция сердечно-сосудистой деятельности, фотосинтез (у растений), а также повышает сопротивляемость организма заболеваниям. СССР занимает ведущее место в мире по использованию УФ излучения в детских учреждениях и больницах, находящихся в сев. р-нах (см. Светолечение). Значит. санационный эффект даёт бактерицидное облучение (см. Ртутная лампа), уничтожающее вредоносных бактерий и снижающее количество заболеваний в 1,5-2 раза. УФ облучение используется для обеззараживания воды и пищевых продуктов. Облучат. установки успешно используются для физиотерапии ("кварц", "солюкс" и т. д.). Существ. экономич, эффект дают облучат. установки в с.-х. произ-ве. УФ облучение скота и птицы на 7-15% увеличивает их продуктивность: удои, яйценоскость, привес. Искусств, свет используют при пром. выращивании овощей, ягод, фруктов в теплицах и оранжереях. Облучат. установки применяют в фотолитографии (см. Планарная технология), для сушки лакокрасочных покрытий, в фотохимич. и др. технологич. процессах.

Светосигнальные установки служат для передачи кодированной (условной) информации - в виде сигналов, создаваемых светофорами дорожными, маяками, огнями судовыми, посадочными и др. сигнальными приборами; воспринимаются эти сигналы глазом или др. приёмниками излучения (напр., фотоэлементами).

Важная область С.- измерения характеристик света (см. Световые измерения, Фотометрия, Колориметрия), а также нормирование светотехнич. установок (см., напр., Освещение городов).

Наряду с традиционными задачами совр. С. решает задачи: создания комфортной световой среды, обеспечивающей весь комплекс информац., морфофункционального, санац. и пр. действий света; использования света как эффективного и рентабельного средства индустриализации с.-х. произ-ва; применения света в качестве технологич. средства в пром-сти; создания ИС, в к-рых реализуются процессы хемилюминесценции и электролюминесценции, применяются полупроводниковые и радиоизотопные материалы.

Сов. светотехнич. школа занимает видное место в мировой С. Значит. вклад в её развитие внесли С. И. Вавилов (люминесценция, действия света), М. А. Шателен (фотометрия, нормирование светотехнич. установок), С. О. Майзель (физические основы процесса зрения), А. А. Гершун (теоретич. фотометрия, расчёты светового поля), П. М. Тиходеев (нормирование светотехнич. установок, световые эталоны и измерения), В. В. Мешков (принципы нормирования и проектирования осветит. установок), Н. М. Гусев и В. А. Дроздов (строительная С.).

В СССР светотехнич. исследования и разработки ведутся во мн. научных и учебных центрах и проектных ин-тах. Среди них: Всесоюзный н.-и., проектно-конструкторский и технологич. светотехнич. ин-т (ВНИСИ, Москва), Всесоюзный н.-и., проектно-конструкторский и технологич. ин-т источников света (ВНИИИС, Саранск), светотехнич. лаборатории НИИ охраны труда ВЦСПС (Ленинград, Иваново и др.), кафедра светотехники Моск. энергетич. ин-та и др.

СССР - член Междунар. комиссии по освещению и Междунар. электротехнич. комиссии. Материалы по вопросам С. публикуются в журналах "Светотехника" (с 1932), "Light and lightning and environmental design" (L., с 1908), "Lux" (P., с 1928), "Lighting design and application" (N. Y., с 1906) и др.

Лит.: Справочная книга по светотехнике [в. 1 - 2], М., 1956-58; Мешков В. В., Основы светотехники, ч. 1 - 2, М.- Л., 1957 - 61; Р о х л и н Г. Н., Газоразрядные источники света, М.- Л., 1966; Тнходеев П. М., Световые измерения в светотехнике, 2 изд., М.- Л., 1962; Гуторов М. М., Основы светотехники и источники света, М., 1968; Айзенберг Ю. Б., Е ф и м к и н а В. Ф., Осветительные приборы с люминесцентными лампами, М., 1968; Мешков В. В., Епанешни ков М. М., Осветительные установки, М., 1972; Кнорринг Г. М., Светотехнические расчеты в установках искусственного освещения, [Л.], 1973; Гусев Н. М., М а к а р е в н ч В. Г., Световая архитектура, М., 1973. С. Г. Юров.

С. кинематографии - отрасль С., решающая разнообразные задачи применения света на всех этапах кинематогра-фич. процесса, а также соответствующих световых измерений. С. в кинематографии разделяют на С. киносъёмки, С. копирования (печати) фильмов и С. кинопроекции.

С. киносъёмки включает разработку и применение: источников света и осветит. приборов для киносъёмочного освещения; осветит. систем и киноэкранов для спец. видов киносъёмки (напр., комбинированной киносъёмки); светофильтров; светоизмерит. аппаратуры для исследования свойств светочувствительных материалов, параметров источников света и осветит. приборов и условий освещения при киносъёмке. Средствами С. при киносъёмке, в т. ч. в особых условиях, напр. в тумане или под водой (при подводной киносъёмке), решаются различные экспозиционные, а также художественно-творческие задачи.

Из киносъёмочных искусственных источников света наиболее удобны в эксплуатации лампы накаливания (ЛН) различного типа и мощности, но с одинаковой цветовой температурой (Тцв~3200-3250 К). Кинопрожекторные ЛН с концентрированным телом накала, мощностью 0,15-20 кет имеют световую отдачу 25-29 лм/вт и яркость ~ 107кд/м2. Перспективны кинопрожекторные кварцево-галогенные ЛН, отличающиеся постоянством световых характеристик, простотой включения и обслуживания и др. достоинствами. Применяют также зеркальные лампы и лампы-фары. В мощных кинопрожекторах используют открытую угольную дугу высокой интенсивности, с яркостью (5-7) х 108 кд/м2. Из газоразрядных источников света применяют в основном кинопроекц. ксеноновые газоразрядные лампы постоянного тока и металло-галогенные лампы. Первые отличаются постоянством спектрального состава света и являются наилучшим имитатором ср. дневного света (Тцв ~ 5700 К); их яркость (2-10) х 108кд/м2, световая отдача 25-45 лм/вт. Вторые имеют высокую световую отдачу (70-100 лм/вт) при удовлетворит. цветопередаче;, их изготовляют на Тцв 6000 и 3200 К.

В качестве киносъёмочных осветит. приборов используются прожекторы со ступенчатыми линзами (диаметром 100-870 мм) и с ЛН, имеющими широкие пределы изменения силы света и угла рассеяния (за счёт расфокусировки). Кинопрожекторы со ступенчатыми линзами и угольной дугой имеют большую силу света, но эксплуатационно менее удобны. Наиболее удобны в эксплуатации и разнообразны по характеристикам киноосветит. приборы с кварцево-галогенными ЛН.

Контроль киносъёмочного освещения осуществляется экспонометрами-яркомерами с широким (20° и более) или узким (0,5-1,5°) углом зрения и люксметрами, измеряющими освещённость осн. объекта съёмки (напр., лица актёра, принимаемого за диффузно отражающий объект с коэфф. отражения ок. 0,3). Оценка качества цветопередачи производится измерителями цвета (колориметрами), а для отд. участков кадра - "цветояркомерами деталей кадра" (с полем ~1°). Для изменения спектрального состава света на осветит. приборах устанавливают осветительные ("коррекционные" и "эффектные") абсорбционные или интерференционные светофильтры.

С. копирования фильмов включает разработку осветит. систем и светоизмерит. приборов для различных кинокопировальных аппаратов. В качестве источников света в них наиболее употребительны кварцево-галогенные ЛН. Контроль освещения в копировальных окнах осуществляется светоизмерит. приборами, с учётом спектральной чувствительности позитивной киноплёнки.

С. кинопроекции решает све-тотехнич. задачи, имеющие целью повышение технич. качества демонстрации кинофильмов, снижение расходов, связанных с производством фильмов, упрощение обслуживания кинопроекц. установок и т. п. Для этого разрабатываются спец. кинопроекц. источники света, осветит. системы и их элементы (см. Кинопроекционный аппарат, Кинопроекционный объектив), киноэкраны (см. Кинопроекционный экран) и светоизмерит. приборы. Кроме того, определяются условия, при к-рых обеспечивается удовлетворит. качество восприятия киноизображения зрителями (напр., необходимые значения яркости проекции, её равномерность, допуски на "засветку", качество цветопередачи и т. п.) при различных видах кинопроекции - обычной, дневной, стереоскопической и т. д.

Яркость кинопроекции на экране для затемнённых помещений нормирована: 35 кд/м2 в отсутствие кинофильма, при работающем обтюраторе кинопроектора; по ней определяют полезный световой поток кинопроектора для данных зала и киноэкрана.

В проф. кинематографии эксплуатируются кинопроекторы со световыми потоками от 150 лм до 30 клм и более. В кинопроекторах с небольшим световым потоком (до 600 лм в 60-миллиметровом и до 1,3 клм в 35-миллиметровом кинопроекторах) применяют кинопроекц. ЛН с большой габаритной яркостью (~3-107кд/м2; обычно кварцево-галогенные), часто в виде единого блока с эллипсоидным отражателем. Кинопроекторы с более высоким световым потоком (2,5-30 клм) снабжают осветителями преим. с кинопроекц. ксеноновыми лампами (мощностью 1-10 кет).

Измерение яркости кинопроекции и равномерности её на киноэкране производят проекц. яркомерами (с различных точек зрит. зала), освещённость киноэкрана - кинопроекц. люксметрами. Киноэкраны контролируют рефлексометрами или наборами эталонных (рабочих) образцов "коэффициентов яркости". Цветность кинопроекции измеряют фотоэлектрич. трёхцветными колориметрами и (менее точно) двухцветными измерителями цветовой темп-ры; для контроля источников света и оптич. элементов применяют спец. фотометрич. приборы.

Лит.: Баранов Г. С., Пелль В. Г., Сахаров А. А., Справочник по технике киносъемки, М., 1959; Голостенов Г. А., Д е р б и ш е р Т. В., Источники света кинопроекторов, М., 1968; Голостенов Г. А., Дербишер Т. В., Светотехнический контроль киноустановок, М., 1971; Косматов Л. В., Свет в интерьере, М., 1973; Голдовский Е. М., Введение в кинотехнику, М., 1974.

Г. А. Голостенов.

Строительная С.- отрасль С., изучающая закономерности распространения и распределения в зданиях световой энергии Солнца и искусств. источников света, оптич. свойства строит. материалов и конструкций, влияние света на зрит. восприятие интерьеров, эстетич. функции света в архитектуре обществ. зданий, площадей, гор. ансамблей и т. д.; раздел строительной физики. Строит. С. понимается и как отрасль строит. техники, разрабатывающая приёмы рационального (с точки зрения эффективного использования утилитарных и художеств. функций света) проектирования и стр-ва зданий, светопрозрачных ограждающих конструкций, солнцезащитных средств и осветительных установок. Одна из осн. задач строит. С.- разработка методов светотехнич. расчёта строит. объектов сообразно с требуемым уровнем освещения рабочих мест, а также с оздоровит., тонизирующим и бактерицидным действием световой среды в диапазонах видимой, ультрафиолетовой и инфракрасной частей спектра. Равделы строит. С.-естеств. освещение, искусств. освещение, архит. освещение, инсоляция помещений и населённых мест и др.

Становление строит. С. как особой науч. дисциплины относится к 50-м гг. 20 в. Развитие строит. С. обусловлено большими масштабами индустриального стр-ва, совершенствованием существующих и созданием новых светопропускающих материалов и конструкций, разработкой и массовым внедрением новых типов источников света.

В строит. С. при решении её задач используют: теоретич. расчёты на основании установленных физ. закономерностей; оценки светотехнич. характеристик помещений с помощью моделей (см. Моделирование); лабораторные испытания свето-пропускающих строит. материалов и элементов конструкций окон, фонарей, солнцезащитных устройств; натурные наблюдения и измерения на объектах.

В строит. С. широко пользуются методами фотометрии, в частности колориметрич. методами. Для исследования светотехнич. характеристик элементов конструкций и моделей зданий сооружают установки типа "искусственный небосвод". Подобная установка представляет собой т. н. светомерный шар, на внутр. поверхности к-рого моделируется естеств. небосвод, и светоприёмную камеру с проёмом, в к-ром устанавливается испытываемый образец.

Строит. С. находит многочисл. приложения при проектировании и стр-ве городов, пром. и с.-х. зданий, искусств. сооружений, картинных галерей, музеев, памятников, выставочных павильонов и т. д. Значение строит. С. для развития материального произ-ва определяется тем, что установление оптимальных количеств. и качеств. характеристик освещения и их осуществление в стр-ве способствуют росту производительности труда, улучшению качества продукции, повышению продуктивности животноводства и растениеводства.

Перспективы развития строит. С. связаны с совершенствованием нормирования естеств. и искусств. освещения (с учётом комплексного воздействия свето-цветовой среды на архит.-художеств. восприятие помещений, работоспособность и здоровье человека), с решением вопросов оптимизации параметров строит. конструкций и осветит. установок в соответствии со светотехнич., а также теплотехнич., прочностными, акустич., аэродинамич. и др. требованиями, определяющими эксплуатац. качества зданий и микроклимат помещений.

Лит.: Гусев Н. М., К и р е е в Н. Н.. Освещение промышленных зданий, М., 1968; Строительная светотехника, [в. 1-4], М., 1969-74; Дроздов В. А., фонари и окна промышленных зданий, М., 1972.

М. И. Краснов.

"СВЕТОТЕХНИКА", ежемесячный научно-технич. журнал, орган Мнн-ва электротехнич. пром-сти СССР и Центрального правления научно-технич. общества энергетики и электротехнич. пром-сти. Издаётся в Москве с 1932. Освещает вопросы: светотехнич. науки в СССР и за рубежом; нормирования, проектирования, монтажа и эксплуатации осветит. и облучат. светотехнич. установок различного назначения; разработки и произ-ва новых ламп, световых приборов, пускорегулирующих устройств, электроустановочных изделий и светоизмерительных приборов; повышения производительности труда в результате улучшения освещения; светотехнич. образования. Журнал публикует также информац., библиографич., хроникальные и др. материалы по светотехнике. Тираж (1975) 10,8 тыс. экз.

СВЕТОТЕХНИЧЕСКОЕ СТЕКЛО, изде лия из неорганич. стекла, предназначаемые для изменения направления и спектрального состава светового потока. По типу изменения направления светового потока С. с. подразделяют на преломляющее (напр., линзы для маяков и светофоров, автомоб. фары), отражающее (сферич., па раболич., гиперболич. зеркала), рассеивающее (плафоны и колпаки светильников и т. д.). Преломление и отражение света достигается формой изделий, а рассеяние -либо матированием их поверхностей, либо глушением, для чего в состав стекла добавляют 3-7% соединений фтора или фосфора. Цветное С. с. подразделяют на 5 групп: красное, жёлтое, зелёное, синее, лунно-белое. Для окрашивания С. с. применяют селен, соединения кадмия, меди, кобальта, хрома. Цветное С. с. используется гл. обр. для транспортной сигнализации. В состав С. с. входят: 60-80% SiO2, окислы алюминия, кальция, магния и т. д. Для повышения термостойкости в стекло вводят В2О3. К С. с. относят также стекло, предназначенное для поглощения или пропускания ультрафиолетового, инфракрасного и рентгеновского излучения, а также для поглощения у(гамма)-лучей и тепловых нейтронов.

Г. С. Богданова.

СВЕТОФИЛЬТР, устройство, меняющее спектральный состав и энергию падающего на него оптического излучения (света). Осн. характеристикой С. является спектральная зависимость его пропускания коэффициента т (или оптической плотности D = -lgt), т. е. зависимость t или D от частоты (длины волны) излучения. Селективные С. предназначены для отрезания (поглощения) или выделения к.-л. участков спектра. В сочетании с приёмниками света эти С. изменяют спектральную чувствительность приёмников. Нейтральные С. более или менее равномерно ослабляют поток излучения в определённой области спектра. Действие С. может быть основано на любом оптич. явлении, обладающем спектральной избирательностью,- на поглощении света (абсорбционные С.), отражении света (отражательные С.), интерференции света (интерференционные С.), дисперсии света (дисперсионные С.) и пр.

Наиболее распространены стеклянные абсорбционные С., к-рые отличаются постоянством спектральных характеристик, устойчивостью к воздействию света и темп-ры, высокой оптич. однородностью. Пром-стью выпускается более 100 марок цветных стёкол для С. На рис. 1 приведены спектральные кривые пропускания нек-рых из них. Используя одно, два, а иногда и три стекла и меняя их толщину, можно получать С. с разнообразными спектральными свойствами. Абсорбционные С. из окрашенной желатины и др. орга-нич. материалов применяются реже вследствие их низких механич. прочности и термич. устойчивости, а также довольно быстрого выцветания. Положит. качествами таких С. являются большое разнообразие спектральных характеристик и простота изготовления. Жидкостные абсорбционные С. используют сравнительно редко. К их достоинствам относится возможность изготовления в лабораторных условиях и плавное изменение характеристик С. при изменении концентраций компонентов раствора. В нек-рых случаях, напр. для выделения ультрафиолетовой области спектра, применяют газовые абсорбционные С. Полупроводниковые С. иногда используют в инфракрасной области спектра, где они обладают резкими границами пропускания.

Отражающие селективные и нейтральные С. изготовляют нанесением металлич. плёнок на кварцевую или стеклянную подложку. Селективные отражающие С. с различными кривыми отражения получают также, комбинируя слои разной толщины в многослойных диэлектрич. зеркалах (см. Зеркало, Оптика тонких слоев).

Рис. 1. Спектральные кривые пропускания некоторых стеклянных абсорбционных светофильтров толщиной 3 мм. t -коэффициент пропускания, л(лямбда) - длина волны света (1 нм = 10А). Диапазон длин волн 200-400 нм соответствует близкому ультрафиолетовому излучению, 400-700 нм - видимому излучению, 700-1200 нм - близкой инфракрасной области спектра.


Интерференционные С. (один из них схематически изображён на рис. 2) состоят из двух полупрозрачных зеркал (напр., слоев серебра) и помещённого между ними слоя диэлектрика оптической толщиной л/2, л, 3 л/2 (л(лямбда) - длина волны в максимуме пропускания). В проходящем свете интерферируют лучи, непосредственно прошедшие через С. и отражённые 2, 4, 6 и более раз от полупрозрачных слоев; в отражённом свете интерферируют лучи, отражённые 1, 3, 5 и более раз. В результате в проходящем свете остаются лучи с длиной волны, равной удвоенной толщине слоя диэлектрика, а в отражённом эти лучи отсутствуют.

Рис. 2. Схематическое изображение простейшего интерференционного светофильтра. Между двумя тонкими слоями серебра, служащими полупрозрачными зеркалами, расположен слой диэлектрика оптической толщиной л(лямбда)/2 (л- - длина волны в максимуме пропускания). Для защиты от повреждений и удобства обращения светофильтр заключён между двумя стеклянными пластинками.


Кривые пропускания таких С. показаны на рис. 3. Интерференционные С. выделяют узкие области спектра (до 15-20 А) с меньшими потерями света, чем абсорбционные. Их недостатком является наличие значительного фона вне полос пропускания и зависимость положения этих полос от угла падения лучей света. Интерференционно-поляризационные С., в к-рых используется явление интерференции поляризованных лучей, могут выделять сверхузкие спектральные области (до долей ангстрема) при полном отсутствии фона. Однако такие С. применяют редко, гл. обр. в астрофизич. исследованиях, т. к. они представляют собой сложные оптич. системы, очень чувствительные к темп-ре и другим внеш. влияниям.

Рис. 3. Кривые пропускания интерференционных светофильтров с серебряными полупрозрачными зеркалами при различных значениях коэффициента отражения R серебряных слоев. t - коэффициент пропускания. Максимум пропускания - при длине волны л0 = 5600 А (560 нм).


В дисперсионных С. максимум пропускания (минимум отражения) приходится на ту длину волны ло, для к-рой равны преломления показатели (ПП) двух сред n1и п2. Чем больше спектральное удаление от л0, тем больше отличаются n1 от и2п2 и тем меньше пропускание (см. Френеля формулы). Выделение спектрального интервала более эффективно, если вещество с ПП п2 (погружённое в среду с ПП n1) размельчить. Обычно дисперсионные С. изготовляют из порошков бесцветных стёкол, залитых органич. жидкостями. Изменяя ПП жидкости, изменяют Хо. То же происходит при изменении темп-ры. Высокая температурная чувствительность приводит к необходимости термостатирования дисперсионных С., что ограничивает их использование.

С. служат для выделения или устранения требуемой спектральной области в науч. исследованиях, в фотометрии, спектрофотометрии, колориметрии, сочетаются почти со всеми оптич. приборами и спектральными приборами. В фотографии. и кинематографич. практике их применяют для уменьшения рассеяния дымкой, улучшения цветопередачи и передачи светотени, съёмки в инфракрасных лучах. В светотехнике они употребляются для сигнализации, цветного освещения, изменения цветовой температуры источников света. С. необходимы во всех случаях, когда нужно избежать нежелательного нагреват. действия инфракрасного излучения, фотохимич. и иных действий ультрафиолетового излучения, либо ослабить или исправить спектральный состав видимого излучения (так, они являются осн. элементом мн. защитных очков). Без С. невозможна инфракрасная, ультрафиолетовая и люминесцентная микроскопия. Эти примеры не исчерпывают чрезвычайного многообразия областей применения С.

Лит.: Зайдель А. Н., Островская Г. В., Островский Ю. И., Техника и практика спектроскопии, М., 1972; Каталог цветного стекла, М., 1967; Баранов С. С., Хлудов С. В., Ш п о л ь-с к и й Э. В., Атлас спектров пропускания прозрачных окрашенных плёнок, М. - Л., 1948; Оптические материалы для инфракрасной техники, М., 1965; Крылова Т. Н., Альбом спектральных кривых коэффициентов отражения тонких непоглощающих слоев на поверхности стекла, Л., 1956; Розенберг Г. В., Оптика тонкослойных покрытий, М., 1958;