загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

ом R и опорным напряжением Е; 5 - преобразователь кода номера диска в сигнал управления приводом механизма выборки; 6 - привод механизма выборки; 7 - электродвигатели.

М. д. появились в сер. 50-х гг. 20 в. и сразу же нашли широкое применение ввиду их весьма высоких технич. характеристик. Занимая по быстродействию промежуточное положение между оперативными и внешними запоминающими устройствами, М. д. обладают достаточно большим объёмом хранимых данных, низкой стоимостью на единицу запоминаемой информации (бит) при высокой эксплуатац. надёжности.

Лит.. Каган Б. М., А д а с ь к о В. И., Пурэ Р. Р., Запоминающие устройства большой ёмкости, М., 1968. Д.. П. Брунштейн. В. П. Исаев.

МАГНИТНЫЙ ЗАРЯД, вспомогательное понятие, вводимое при расчётах статических магнитных полей (по аналогии с электрич. зарядом, создающим электростатич. поле). М. з., в отличие от электрич. зарядов, реально не существуют, т. к. магнитное поле не имеет особых источников, помимо электрич. токов. Гипотеза П. Дирака (1931) о существовании в природе М .з. (магнитных монопо-лей) экспериментально не подтверждена, хотя попытки обнаружить М. з. продолжаются. Для тел, обладающих намагниченностью, можно ввести понятия объёмной рmи поверхностной бm плотностей М. з. Первая связана с неоднородным распределением намагниченности по объёму тела, вторая - со скачком нормальной составляющей намагниченности на поверхности магнетика, М. з. располагаются двойными слоями на поверхностях, где происходит скачок нормальной составляющей намагниченности, причём элементарные М. з. противоположных знаков оказываются связанными в магнитные диполи.

Лит.: Т а м м И. Е., Основы теории электричества, 8 изд., М., 1966. С. В. Вонсовский.

МАГНИТНЫЙ ЛИСТОК, бесконечно тонкий двойной магнитный слой, образованный магнитными диполями. Магнитное поле М. л. при определённых условиях эквивалентно полю постоянного электрич. тока, текущего по контуру листка (см. Ампера теорема). Эквивалентность М. л. и замкнутого линейного тока используется в электротехнич. расчётах.

МАГНИТНЫЙ МОМЕНТ, основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классич. теории электромагнитных явлений, являются электрич. макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классич. теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М) силы тока i на площадь контура б (М = i б/с в СГС системе единиц, с - скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = ml, где т - эквивалентный магнитный заряд контура, а l - расстояние между "зарядами" противоположных знаков (+ и -).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и др.), как показала квантовая механика, обусловлен существованием у них собственного механич. момента - спина. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона nсп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абс. величина проекции
[1513-4.jpg]
где nв= (9,274096 ±0,000065)*10-21 эрг/гс- Бора магнетон, h - h/2Пи, где h - Планка постоянная, е и те - заряд и масса электрона, с - скорость света; SH- проекция спинового механич. момента на направление поля Н. Абс. величина спинового М. м.
[1513-5.jpg]
где s= 1/2 - спиновое квантовое число. Отношение спинового М, м. к механич. моменту (спину)
[1513-6.jpg]
Исследования атомных спектров показали, что (nнсп фактически равно не nв, а nв (1 + 0,0116). Это обусловлено действием на электрон т. н. нулевых колебаний электромагнитного поля (см. Квантовая электродинамика, Радиационные поправки).

Орбитальный М. м. электрона nорб связан с механич. орбитальным моментом ЭЛорб соотношением gорб= |nорб|/|Mорб| = = |е|/2теС, т. е. магнитомеханическое отношение gорб в два раза меньше, чем gсп. Квантовая механика допускает лишь дискретный ряд возможных проекций nорб на направление внешнего поля (т. н. квантование пространственное): nнорб = mi*nв, где mi - магнитное квантовое число, принимающее 2l+1 значений (0,±1, ±2, ..., ±l, где l- орбитально е квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (gсп не равно gорб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механич. моменту J. Поэтому часто рассматривают слагающую полного М. м. на направление вектора J, равную
[1513-7.jpg]
где gj - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М.м. протона, спинк-рого равен корню из 3h/2, должен был бы по аналогии с электроном равняться
[1513-8.jpg]

где Мр - масса протона, к-рая в 1836,5 раз больше тe nяд - ядерный магнетон, равный 1/1836,5nв У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона nр = 2,7927nяд, а нейтрона nп= - 1,91315тnяд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфич. ядерные взаимодействия (см. Ядерные силы, Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными nяд или np и nп. Таким образом, М. м. ядра калия. К равен - 1,29nяд. Причиной этой неаддитивности является влияние ядерных сил, действующих между образующими ядро нуклонами. М. м. атома в целом равен векторной сумме М. м. электронной оболочки и атомного ядра.

Для характеристики магнитного состояния макроскопич. тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. наз. намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, феррии антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абс. нуле темп-ры) на число атомов - носителей М м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора nв оказываются дробными (напр., в переходных d-металлах Fe, Co и Ni соответственно 2,218 nB) 1,715 nв и 0,604 цв) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (напр., ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР. ФМР и т. п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., к-рый определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закона или Кюри - Вепса закона (см. Парамагнетизм).

Лит.: Т а м м И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Л и ф ш и ц Е. М., Электродинамика сплошных сред, М., 1959; Д о р ф м а н Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973. С. В. Вонсовский.

МАГНИТНЫЙ МОНОПОЛЬ. Законы природы обнаруживают большую степень подобия между электрическим и магнитным полями. Уравнения поля, установленные Дж. Максвеллом, одни и те же для обоих полей. Имеется, однако, одно большое различие. Частицы с электрич. зарядами, положительными и отрицательными, постоянно наблюдаются в природе, они создают в окружающем пространстве кулоновское электрич. поле. Магнитные же заряды, ни положительные, ни отрицательные, никогда не наблюдались по отдельности. Магнит всегда имеет два равных по величине полюса на двух своих концах - положительный и отрицательный, и магнитное поле вокруг него есть результирующее поле обоих полюсов.

Законы классич. электродинамики допускают существование частиц с одним магнитным полюсом - магнитных монополей и дают для них определённые уравнения поля и уравнения движения. Эти законы не содержат никаких запретов, в силу к-рых М. м. не могли бы существовать.

В квантовой механике ситуация несколько иная Непротиворечивые уравнения движения для заряженной частицы, движущейся в поле М. м., и для М. м., движущегося в поле частицы, можно построить только при условии, что электрич. заряд е частицы и магнитный заряд n М. м. связаны соотношением:

en = 1/2nhc, (*) где h - Планка постоянная, с - скорость света, а п - положительное или отрицательное целое число. Это условие возникает вследствие того, что в квантовой механике частицы представляются волнами и появляются интерференционные эффекты в движении частиц одного типа под влиянием частиц другого типа. Если M/ м. с магнитным зарядом n существует, то формула (*) требует, чтобы все заряженные частицы в его окрестности имели заряд е, равный целому кратному величины hс/2n. Т. о., электрич. заряды должны быть квантованы.

Но именно кратность всех наблюдаемых зарядов заряду электрона является одним из фундаментальных законов природы. Если бы существовал М. м., этот закон имел бы естеств. объяснение. Никакого другого объяснения квантования электрич. заряда не известно.

Принимая, что е - заряд электрона, величина которого определяется соотношением e2/hc =1/137, можно чз формулы (*) получить наименьший магнитный заряд nо монополя, определяемый равенством nо2/hс = 137/4. Т. о., до значительно больше е. Отсюда следует, что трек быстро движущегося М. м. в Вильсона камере или в пузырьковой камере должен очень сильно выделяться на фоне треков других частиц. Были предприняты тщательные поиски таких треков, но до сих пор М. м. не были обнаружены.

М. м.- стабильная частица и не может исчезнуть до тех пор, пока не встретится с другим монополем, имеющим равный по величине и противоположный по знаку магнитный заряд. Если М. м. генерируются высокоэнергичными космическими лучами, непрерывно падающими на Землю, то они должны встречаться повсюду на земной поверхности. Их искали, но также не нашли. Остаётся открытым вопрос, связано ли это с тем, что М. м. очень редко рождаются, или же они вовсе не существуют, п. А. М. Дирак.

От редакции. Гипотеза о возможности существования М. м.- частицы, обладающей положительным или отрицательным магнитным зарядом, была высказана П. А. М. Дираком (1931), поэтому М. м. называют также монополем Дирака.

Лит.; D i г а с Р. А. М., Quantised singularities in the electromagnetic field, "Proceedings of the Royal Society", Ser. A, 1931, v. 133, № 821; Д э в о н с С., Поиски магнитного монополя, "Успехи физических наук", 1965, т. 85, в. 4, с. 755 - 60 (Дополнение Б. М. Болотовского, там же, с. 761-62); Ш в и н г е р Ю., Магнитная модель материи, там же, 1971, т. 103, в. 2, с. 355-65; Монополь Дирака. Сб. ст., пер. с англ., под ред. Б. М. Болотовского и Ю. Д. Усачева, М., 1970.

МАГНИТНЫЙ ПОЛЮС, участок поверхности намагниченного образца (магнита), на к-ром нормальная составляющая намагниченности Jn отлична от нуля. Если магнитный поток в образце и окружающем пространстве изобразить графически с помощью линий индукции магнитного поля, то М. п. будет соответствовать месту пересечения поверхности образца этими линиями (см. рис.). Обычно участок поверхности, из к-рого выходят силовые линии, наз. северным (N) или положительным М. п., а участок, в к-рый эти линии входят,- южным (S) или отрицательным. Одноимённые М. п. отталкиваются, разноимённые притягиваются. Если следовать аналогии с взаимодействием электрич. зарядов, то М. п. можно приписать отличную от нуля поверхностную плотность магнитных зарядов бт= Jn, хотя в действительности магнитных зарядов не существует (см. Магнитный монополь). Отсутствие в природе магнитных зарядов приводит к тому, что линии магнитной индукции не могут прерываться в образце и у намагниченного образца наряду с М. п. одной полярности всегда должен существовать эквивалентный М. п. другой полярности. Для многих технич. целей используются магниты и электромагниты с большим числом пар М. п. (напр., в электрич. машинах постоянного тока).

В учении о земном магнетизме также рассматривают М. п. (см. Полюсы геомагнитные и Полюсы магнитные Земли). Стрелка магнитного компаса своим северным М. п. указывает направление на Сев. полюс Земли (точнее, на юж. М. п. Земли, к-рый расположен в Сев. полушарии), Южным полюсом - направление на Юж. полюс (сев. М. п. Земли).

Магнитное поле и полюсы (N и S) намагниченного стального стержня. Линиями со стрелками обозначены линии магнитной индукции (линии замыкаются в окружающем стержень пространстве).

Лит.: Вонсовский С. В., Магнетизм, М., 1971; Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

МАГНИТНЫЙ ПОТЕНЦИАЛОМЕТР, устройство для измерения разности магнитных потенциалов между двумя точками магнитного поля или магнитодвижущей силы по замкнутому контуру, к-рый охватывает проводники с током, создающие магнитное поле. Магнитный потенциал - условное понятие, т. к. в силу замкнутости силовых линий магнитного поля (отсутствия в природе магнитных зарядов) это поле не является потенциальным. Однако при технич. расчётах и измерениях часто пользуются понятием разности магнитных потенциалов (магнитного напряжения) Uмагн между двумя точками поля, определяя Uмагн как работу по перемещению единичного магнитного заряда между выбранными точками поля.

М. п. представляет собой индукционную катушку (катушку поля). Она имеет гибкий или жёсткий каркас (обычно плоский с постоянным сечением по длине), на к-ром равномерно намотана обмотка из тонкого провода (рис.). Концы обмотки присоединяются к измерителю, в качестве к-рого при измерениях в постоянных магнитных полях обычно применяют баллистич. гальванометр или микровеберметр, в переменных магнитных полях - вольтметр или осциллограф. Если такой М. п. находится в постоянном магнитном поле, причём его концы располагаются в точках с разными магнитными потенциалами, то магнитный поток, пронизывающий М. п.- потокосцепление потенциалометра, - пропорционален магнитному напряжению между его концами (Uмагн). При удалении М. п. из поля, смыкании его концов или выключении поля происходит отброс стрелки баллистич. гальванометра, пропорциональный изменению по-токосцепления Ф. Измеряемое магнитное напряжение Uмагн = Ф/k, где k - постоянная М. п. По величине Uмагн рассчитывают среднюю напряжённость магнитного поля НСР между концами М. п.: Hср = Uмагн/l, где l - расстояние между фиксированными точками поля. Если М. п. замкнуть, охватив проводники с током, создающие магнитное поле, то измеренное ДФ пропорционально магнитодвижущей силе.

Схематическое изображение магнитных потенциалометров с катушкой поля: а - жёсткий дуговой потенциалометр, 6 - прямолинейный потенциалометр, в - потенциалометр на гибком каркасе (пояс Роговского). В - линии индукции магнитного поля.

М. п. можно измерять разности магнитных потенциалов (магнитодвижущую силу), начиная с 10-3-10-2а (в Международной системе единиц магнитодвижущую силу измеряют в ампер-витках или амперах).

Лит.: К и ф е р И. И., Испытания ферромагнитных материалов, М., 1969; Чечерников В. И., Магнитные измерения, 2 изд., М., 1969. И. И. Кифер,

МАГНИТНЫЙ ПОТОК. поток магнитной индукции, поток Ф вектора магнитной индукции В через к.-л. поверхность. М. п. dФ через малую площадку dS, в пределах к-рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Впвектора на нормаль к этой площадке, т. е. dФ = BndS. М. п. Ф через конечную поверхность S определяется интегралом: BndS. Для замкнутой поверхности этот интеграл равен нулю, что отражает соленоидальный характер магнитного поля, т. е. отсутствие в природе магнитных зарядов - источников магнитного поля. Единица М. п. в Международной системе единиц (СИ) - вебер, в СГС системе единиц - максвелл; 1 вб = 108мкс,

МАГНИТНЫЙ ПРОБОЙ, см. Пробой магнитный.

МАГНИТНЫЙ ПУСКАТЕЛЬ, электрический аппарат низкого напряжения, Предназначенный для дистанционного управления (пуска, остановки, изменения направления) и защиты асинхронных электродвигателей малой и средней мощности с короткозамкнутым ротором. Существуют М. п. нереверсивные и реверсивные; выпускаются также спец. М. п. для переключения обмоток многоскоростных электроприводов. М. п. состоят из контактора, кнопочного поста и теплового реле. Контактор М. п., как правило, имеет 3 гл. контактные системы (для включения в трёхфазную сеть) и от 1 до 5 блок-контактов. На рис. представлена схема нереверсивного М. п. переменного тока. При нажатии кнопки "пуск" на обмотку контактора ОР подаётся напряжение, контактор срабатывает, замыкая гл. контакты ГК и блок-контакты БК; БК шунтируют контакты нажатой кнопки, что позволяет отпустить её после запуска двигателя. С нажатием кнопки "стоп" цепь питания ОР разрывается и ГК размыкаются. При резком возрастании силы потребляемого тока вследствие перегрузки или неисправности электродвигателя срабатывает тепловое реле ТР а размыкает контакты КТР, включённые в цепь питания ОР. Номинальный ток срабатывания ТР от 0,2 до 200 а. Реверсивные М. п. оборудованы двумя контакторами, сблокированными между собой механически и электрически, при этом во включённом положении может находиться лишь один из контакторов. При поочерёдном включении контакторов переключаются фазы питания и направление вращения электродвигателя изменяется. М. п. общего применения изготовляются на напряжения переменного тока 127, 220, 380 и 500 в; номинальный ток через силовые контакты от 6 до 400 а, номинальный ток блок-контактов 6-10 а. При нормальном режиме работы М. п. допускают 3-5 (иногда до 10) млн. циклов включение - выключение. М. п, могут работать с частотой 150-1200 вкл/ч, а М. п. малой мощности - с частотой до 3000 вкл/Ча Выпускаются М.п. в обыкновенном, защищённом и взрывобезопасном исполнении.

Схема нереверсивного магнитного пускателя: ГК -главные контакты; КТР -контакты теплового реле; ОР -обмотка контактора; ТР - тепловое реле; БК -блок-контакты; КП -кнопочный пульт; ЭД - электродвигатель.

Лит.: Бабвков М. А., Электрические аппараты, ч. 2, М., 1956; Ч у н и-х и н А. А., Электрические аппараты, М., 1967 В. К. Иванов.

МАГНИТНЫЙ РЕЗОНАНС, избирательное поглощение веществом электромагнитных волн определённой длины волны, обусловленное изменением ориентации магнитных моментов электронов или атомных ядер. Энергетич. уровни частицы, обладающей магнитным моментом д, во внешнем магнитном поле Н расщепляются на магнитные подуровни, каждому из к-рых соответствует определённая ориентация магнитного момента д относительно поля Н (см. Зеемана эффект). Электромагнитное поле резонансной частоты w вызывает квантовые переходы между магнитными подуровнями. Условие резонанса имеет вид:

E = hw, где E - разность энергий между магнитными подуровнями, h - Планка постоянная.

Если поглощение электромагнитной энергии осуществляется ядрами, то М, р. наз. ядерным магнитным резонансом, ЯМР. Магнитные моменты ядер обусловлены их спинами I. Число ядерных магнитных подуровней равно 2I + 1, а расстояния между соседними подуровнями одинаковы и равны:
[1513-9.jpg]
где y - магнитомеханическое отношение. Отбора правила допускают переходы только между соседними подуровнями, поэтому всем переходам соответствует одинаковая резонансная частота (рис.), линии поглощения перекрываются и наблюдается одна линия.

Однако в нек-рых кристаллах для ядер со спином I > 1 возникает дополнительное смещение уровней, вызванное взаимодействием электрич. квадрупольного момента ядра с внеядерным неоднородным внутрикристаллич. электрич. полем Е в месте расположения ядра (см. Кристаллическое поле). В результате этого в спектре поглощения появляются дополнительные линии (см. Ядерный квадру-полъный резонанс, ЯКР).

М. р., обусловленный магнитными моментами электронов в парамагнетиках, наз. электронным парамагнитным резонансом (ЭПР). Спектр ЭПР зависит как от спина, так и от орбитального движения электронов, входящих в состав парамагнитных атомов и молекул, и обычно чувствителен к внутрикристаллическому полю в месте расположения парамагнитной частицы. В ферромагнетиках и антиферромагнетиках электронный М. р. наз. соответственно ферромагнитным резонансом и антиферромагнитным резонансом.

Расщепление уровней энергии во внешнем магнитном поле H0 в случае ядерного магнитного резонанса при I =3/2.

Во многих случаях полезно классич. описание М- р., основанное на том, что магнитный момент частицы д испытывает во внешнем магнитном поле Н Лармора прецессию около направления вектора Н с частотой со = уН. Переменное магнитное поле H1, перпендикулярное Н и вращающееся синхронно с n, т. е. с частотой со, оказывает постоянное воздействие на магнитный момент, к-рое и ведёт к изменению его ориентации в пространстве.

К М. р. иногда относят также наблюдаемый в металлах и полупроводниках, помещённых в постоянное магнитное поле, циклотронный резонанс - резонансное поглощение электромагнитной энергии, связанное с периодич. движением электронов проводимости и дырок в плоскости, перпендикулярной полю Н (см. Лоренца сила, Диамагнетизм).

Лит.: С л и к т е р Ч., Основы теории магнитного резонанса, пер. с англ., М., 1967; Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963; Альтшуяер С. А., Козырев Б. М., Электронный парамагнитный резонанс, М., 1961. В. А. Ацаркин,

МАГНИТНЫЙ УСИЛИТЕЛЬ, усилитель электрич. сигналов, основанный на использовании присущей ферромагнитным материалам нелинейной зависимости магнитной индукции В от напряжённости магнитного поля Н. Управляемыми элементами в М, у, являются индуктивности катушки с ферромагнитными сердечниками, в к-рых действуют 2 переменных магнитных поля; одно изменяется с частотой источника питания, другое - с частотой усиливаемого сигнала. Простейший М. у. состоит из 2 замкнутых магнитол роводов, обмотки к-рых W1 включены последовательно и питаются от источника переменного напряжения ~U (рис.). Вторичные обмотки W2 включаются последовательно и навстречу друг другу, поэтому замыкание обмоток W2 на небольшое сопротивление не вызывает к.-л. изменения силы тока i1 в первичных обмотках. Если по обмоткам W2 пропустить постоянный ток, то вследствие нелинейного характера кривой намагничивания сердечников динамич. магнитная проницаемость уменьшается и соответственно уменьшается индуктивность L1первичных обмоток, при этом ток в обмотках возрастает. Устройство, собранное по схеме на рис. (без сопротивления нагрузки RK), наз. управляемым дросселем, к-рый становится усилителем, если последовательно с его обмотками W1 включить RH, а вместо постоянного тока в обмотку W2 подать усиливаемый сигнал постоянного или медленно (по сравнению со скоростью изменения питающего напряжения = V) изменяющегося тока i2.

М. у. принципиально отличается от лампового и транзисторного усилителей тем, что усиливаемый сигнал изменяет не внутр. сопротивление лампы (транзистора), а индуктивность L1, включённую последовательно с нагрузкой RH, в результате чего изменяется протекающий через нагрузку ток. М. у. по существу является модулятором, в к-ром ток в нагрузке более высокой частоты модулируется по амплитуде усиливаемым сигналом (низкой частоты). Для получения на выходе М. у. сигнала той же формы, что и усиливаемый сигнал, устройство дополняют выпрямителем в цепи нагрузки, выполняющим роль детектора.

Схема простейшего магнитного усилителя: ~U-переменное напряжение; RH - сопротивление нагрузки; W1 - первичные обмотки; W2-вторичные обмотки; МС - магнитные сердечники; = U - постоянное напряжение; i1 - ток в первичной обмотке; iг - ток во вторичной обмотке (усиливаемый сигнал).

Коэфф. усиления по току Ki и по мощности Кр для простейших М. у. равны:
[1513-10.jpg]

где Ry - активное сопротивление обмоток W2, icp - приращение тока нагрузки, соответствующее приращению тока сигнала i2, п1и n2 - число витков в первичной и вторичной обмотках. По сравнению с ламповыми и полупроводниковыми усилителями М. у. имеют относительно высокую инерционность, к-рая объясняется гл. обр. отставанием во времени изменения тока i2 в управляющей обмотке от изменения напряжения, подаваемого на вход М. у. Поэтому их применяют преим. для усиления сигналов постоянного или медленно изменяющегося тока. Инерционность М. у. можно снизить (повысить быстродействие) введением гибкой обратной связи, увеличением числа каскадов усиления, а также включением дифференцирующего контура на входе М. у., шунтированием нагрузки ёмкостью и др. Для расширения частотного диапазона усиливаемых колебаний в сторону более высоких частот целесообразно применять М. у. совместно с ламповыми, полупроводниковыми, электромашинными и др. типами усилителей.

Существуют сотни модификаций схем и конструкций М. у., отличающихся видом нагрузочной характеристики, способом осуществления обратной связи, числом и формой сердечников, видом усиливаемых сигналов, системой смещения, режимом работы. Выбор типа М. у. зависит от требуемых коэфф. усиления, частоты усиливаемых колебаний, области использования. М. у. имеют самое разнообразное применение- от точных измерит, приборов до устройств автоматич. управления мощными производств, агрегатами (прокатными станами, экскаваторами и т. п.). Широкое применение М. у. обусловлено преимуществами: большим сроком службы, высокой надёжностью, простотой обслуживания, значит, коэфф. усиления, низким порогом чувствительности для сигналов постоянного тока (10-19-10-17 вm), широким диапазоном усиливаемых мощностей - от 10-13-10-6вт до неск. десятков и даже сотен квт, постоянной готовностью к работе, возможностью суммировать на входе неск. управляющих сигналов, значит, перегрузочной способностью, пожаро- и взрывобезопасностью, стабильностью характеристик в процессе эксплуатации.

Лит.: Розенблат М. А., Магнитные усилители, 3 изд., М., 1960; его же, Магнитные элементы автоматики и вычислительной техники, М., 1966.

МАГНИТОБИОЛОГИЯ, раздел биофизики, изучает влияние внешних искусственных и естественных магнитных полей на живые системы (клетка, организм, популяция и т. д.), исследует магнитные поля, генерируемые живыми структурами (сердце, мозг, нерв и т. п.), и определяет магнитные свойства веществ биол. происхождения. Сведения о влиянии искусств, магнитных полей (МП) на организм человека появились в глубокой древности. О лечебных свойствах магнита упоминали Аристотель (4 в. до н. э.) и Плиний Старший (1 в. н. э.), нем. врач Парацельс (16 в.) и англ, естествоиспытатель У. Гильберт (17 в.). В древности часто преувеличивали леч. свойства магнита, считая, что им можно вылечить любую болезнь и даже вернуть молодость. Европ. медики 19 в. (среди них франц. невропатолог Ж. М. Шарко и рус. клиницист С. П. Боткин) указывали на успокаивающее действие МП на нервную систему. В нач. 20 в. применение МП в физиотерапии было вытеснено более мощными средствами электротерапии (диатермия, поле УВЧ и т. п.). Интенсивное развитие М. начинается с 60-х гг. в связи с зарождением космической биологии. Большинство работ по М. посвящено изучению биол. действия усиленных (по сравнению с геомагнитным полем) искусств. МП. Напряжённость этих МП варьировала от долей эрстеда до 140 000 эрстед, чаще всего изучали биол. действие МП напряжённостью неск. сот эрстед. Такие поля вызывают разнообразные эффекты у человека, животных, растений, микроорганизмов, а также в изолированных тканях, клетках и внутриклеточных органеллах. В организме млекопитающих на МП реагируют все системы, но наиболее реактивными являются те, которые выполняют регуляторные функции (нервная, эндокринная и кровеносная). Особенно чувствительны к МП эмбриональные ткани и наиболее интенсивно функционирующие органы взрослых животных.

На нервную систему МП оказывает преим. тормозное действие, угнетая условные и безусловные рефлексы, изменяя электроэнцефалограмму в сторону преобладания медленных ритмов и уменьшая частоту электрич. разрядов отдельных нейронов. В клетках нейроглии при этом изменяются биохим. процессы. Электронномикроскопич. исследования обнаружили нарушения структуры митохондрий в нервных клетках. Из отделов головного мозга наиболее магнитореактивными оказались гипоталамус и кора больших полушарий. Изолированные структуры мозга реагировали на МП интенсивнее, чем целостный мозг, что свидетельствует о непосредственном действии МП на нервную ткань. Гипофиз в ответ на магнитное воздействие изменял продукцию отдельных гормонов и прежде всего гонадотропных. Значит, морфоло-гич. изменения наблюдали в половых железах (особенно мужских), в надпочечниках и щитовидной железе. Изменения кровеносной системы выражались в расширении сосудов и кровоизлияниях. В крови наблюдались увеличение числа лейкоцитов, изменение свойств тромбоцитов и РОЭ. Реакции экспериментальных животных на МП обычно носили обратимый характер.

Сильные МП (неск. тыс. эрстед) вызывали у растений подавление роста корней, уменьшение интенсивности фотосинтеза, изменения в окислит, процессах и др. эффекты. Под влиянием МП изменялись характер и скорость роста микроорганизмов, активность их ферментных систем, синтез РНК и чувствительность к повышенным темп-рам. Часть перечисленных эффектов объясняют изменением проницаемости биологических мембран, ориентации макромолекул и свойств содержащихся в организме водных растворов.

Предполагают, что геомагнитное поле и его изменения (см. Земной магнетизм) играют важную роль в ориентации живых организмов в пространстве и во времени. Наряду с др. физич. факторами оно может оказывать ориентирующее действие не только при дальних миграциях птиц и рыб, но и при передвижении насекомых, червей, моллюсков и др. животных. Нек-рые растения ориентируют свою корневую систему относительно магнитного меридиана (см. Магнитотропизм). Колебания геомагнитного поля, вызванные изменением солнечной активности, сказываются на мн. процессах в биосфере и изучаются гелиобиологией. Длительное искусственное ослабление геомагнитного поля путём экранировки или компенсации оказывало неблагоприятное влияние на жизнедеятельность животных, растений и микроорганизмов, что заставляет предполагать экологическую значимость геомагнитного поля.

Данные М. важны для терапевтич. целей и при гигиенич. оценке МП, используемых на различных произ-вах. Поскольку МП обладает проникающим действием и влияет прежде всего на регуляторные системы организма, оно может служить удобным инструментом при управлении нек-рыми биол. процессами. Для осуществления этой задачи необходимо выяснить зависимость биол. эффекта от напряжённости, градиента, частоты и направления МП, а также от локализации и продолжительности воздействия поля. Большой интерес представляют данные о противоопухолевом, антирадиационном и противотемпературном защитном действии постоянного МП. Однако отсутствие общепризнанной теории первичного (физико-химич.) механизма биол. действия МП и разрозненный эмпирич. характер большинства исследований тормозят развитие М„ Для обсуждения полученных результатов и координации работ по М. были проведены три симпозиума в Москве (Биологическое действие магнитных полей и статического электричества, 1963; Реакция биологических систем на слабые магнитные поля и Подходы к гигиенической оценке магнитных полей, 1971), конференции в Томске (1964, 1965) и Всесоюзные совещания по изучению влияния МП на биологические объекты (Москва, 1966, 1969). В Чикаго (США) состоялись Международные симпозиумы по М. (1961, 1963. 1966).

Лит.: Биологическое и лечебное действие магнитного поля и строго-периодической вибрации, Пермь, 1948; Пресман А. С., Электромагнитные поля и живая природа, М., 1968; Холодов Ю. А., Магнетизм в биологии, М., 1970; Влияние магнитных полей на биологические объекты. Библиографический указатель отечественной и иностранной литературы, М., 1970; Влияние солнечной активности на атмосферу и биосферу Земли, М., 1971; Новости медицинского приборостроения, в. 3, М., 1971, с. 63- 92; Влияние магнитных полей на биологические объекты, М., 1971; Biological effects of magnetic fields, v. 1-2, N. Y.-L., 1964-69. Ю. А. Холодов.

МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР, МГД-ге н ер а тор, энергетическая установка, в к-рой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрич. энергию. Название "М. г." связано с тем, что движение таких сред описывается магнитной гидродинамикой, Прямое (непосредственное) преобразование энергии составляет гл. особенность М. г-, отличающую его от генераторов электромашинных. Так же, как и в последних, процесс генерирования электрич. тока в М. г. основан на явлении индукции электромагнитной, т. е. на возникновении тока в проводнике, пересекающем силовые линии магнитного поля; отличие М. г. в том, что в нём проводником является само рабочее тело, в к-ром при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков. Рабочими телами М. г. могут служить электролиты, жидкие металлы и ионизованные газы (плазма). В типичном для М. г. случае, когда рабочим телом служит газообразный проводник - плазма, носителями зарядов являются в основном свободные электроны и положит, ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В сильных магнитных полях или разреженном газе заряженные частицы успевают между соударениями сместиться (в плоскости, перпендикулярной магнитному полю); такое направленное смещение заряженных частиц в М. г. приводит к тому, что появляется дополнительное электрич. поле, т. н. поле Холла (см. Холла эффект), направленное параллельно потоку газа. Термин "М. г.", первоначально обозначавший устройства, в к-рых рабочим телом являлась электропроводная жидкость, в дальнейшем стал применяться также для обозначения всех устройств подобного типа, в т. ч. использующих в качестве рабочего тела электропроводный газ.

Идея возможной замены твёрдого проводника жидким была выдвинута англ, физиком М. Фарадеем. Однако его попытка экспериментально подтвердить эту идею в 1832 окончилась неудачей, и лишь в 1851 англ, учёный Волластон практически подтвердил предположение М. Фарадея, измерив эдс, индуцированную приливными течениями в Ла-Манше, Отсутствие необходимых знаний по элект-рофизич. свойствам газообразных и жидких тел долго тормозило работы по практическому использованию идеи Фарадея В дальнейшем исследования развивались по двум оси" направлениям; использование эффекта индуцирования эдс для измерения скорости движущейся среды (напр., в электромагнитных расходомерах) и генерирование электрич. энергии. Первые патенты по использованию метода МГД-преобразования энергии были выданы в 1907-10, однако упоминающиеся в них способы и средства как ионизации, так и получения необходимых электрофизич. свойств рабочего тела были неприемлемы. Практич. реализация МГД-преобразования энергии оказалась возможной только в кон. 50-х гг., после разработки теории магнитной гидродинамики и физики плазмы и исследований в области физики высоких температур, благодаря главным образом успехам ракетной техники и созданию к этому времени жаропрочных материалов.

Первый экспериментальный М. г. мощностью 11,5 квт, в к-ром осуществлялось достаточно сильное взаимодействие между ионизированным газом и магнитным полем, был построен в 1959 в США. Источником рабочего тела - плазмы с температурой 3000 К - служил плазмотрон, работавший на аргоне с присадкой щелочного металла для повышения степени ионизации газа. На этом М. г. был продемонстрирован эффект Холла, В 1960 в США был построен лабораторный М. г. на продуктах сгорания с присадкой щелочного металла. К середине 60-х гг. мощность М. г, на продуктах сгорания удалось повести до 32 Мвт ("Марк-V", США).

В СССР усилия специалистов были направлены гл. обр, на создание комплексных энергетич. установок с М. г. В 1962-65 была проведены теоретич. и экспериментальные исследования, созданы лабораторные установки. Результаты исследований и накопленный инж. опыт позволили в 1965 ввести в действие комплексную модельную энергетич. установку "У-02", включавшую осн. элементы ТЭС с М. г. и работавшую на природном топливе. На "У-02" были получены экспериментальные данные, сушественно расширившие представление о возможностях практич. использования МГД-установок. Несколько позднее было начато проектирование опытно-пром. МГД-установки "У-25", к-рое проводилось одновременно с исследоват. работами на "У-02". Успешный пуск первой в СССР опытно-пром. энергетич. установки с М. г., имеющим расчётную мощность 20-25 Мвт, состоялся в 1971.

М. г. состоит из канала, по к-рому движется рабочее тело (обычно плазма), электромагнитной системы для создания магнитного поля и устройств для отвода электроэнергии (электродов) с включённой нагрузкой (рис. 1).

Рис. 1, Простейшая схема установки с МГД-гене-ратором: 1-обмотка электромагнита; 2-камера сгорания; 3 - присадка; 4 - воздух; 5 - топливо; 6 -сопло; 7 - электроды с последовательно включённой нагрузкой; 8 - выход продуктов сгорания.

Системы с М. г. могут работать по открытому и замкнутому циклам. В первом случае продукты сгорания являются рабочим телом, а использованные газы после удаления из них присадки щелочных металлов (вводимой в рабочее тело для увеличения электропроводности) выбрасываются в атмосферу. В М.г, замкнутого цикла тепловая энергия, полученная при сжигании топлива, передаётся в теплообменнике рабочему телу, к-рое затем, пройдя М, г., возвращается, замыкая цикл, через компрессор или насос. Источниками тепла могут служить реактивные двигатели, ядерные реакторы, теплообменные устройства. Рабочим телом в М. г, могут быть продукты сгорания ископаемых топлив и инертные газы с присадками щелочных металлов (или их солей); пары щелочных металлов; двухфазные смеси паров и жидких щелочных металлов; жидкие металлы и электролиты. Но если жидкие металлы и электролиты являются природными проводниками, то для того чтобы газ стал электропроводным, его необходимо ионизовать до определённой степени, что осуществляется главным образом нагреванием до температур, достаточных для начала термической ионизации (большинство газов ионизуется только при температуре около 10 000 К). Необходимая степень ионизации при меньших температурах достигается обогащением газа парами щелочных металлов; при введении в продукты сгорания щелочных металлов (напр., К, Cs, Na) или их солей газы становятся проводниками уже при 2200-2700 К.

В М. г. с жидким рабочим телом генерирование электроэнергии идёт только за счёт преобразования части кинетич. или потенциальной энергии потока электропроводной жидкости практически при постоянной темп-ре. В М. г. с газовым рабочим телом принципиально возможны три режима: с сохранением темп-ры и уменьшением кинетич. энергии; с сохранением кинетич. энергии и уменьшением темп-ры; со снижением и темп-ры и кинетич. энергии.

По способу отвода электроэнергии М. г. разделяют на кондукционные и индукционные. В кондукционных М г. в рабочем теле, протекающем через поперечное магнитное поле, возникает электрич. ток, к-рый через съёмные электроды, вмонтированные в боковые стенки канала, замыкается на внешнюю цепь. В зависимости от изменения магнитного поля или скорости движения рабочего тела такой М. г. может генерировать постоянный, как правило, или пульсирующий ток. В индукционных М. г. (по аналогии с обычными электромашинными генераторами) электроды отсутствуют. Такие установки генерируют только переменный ток и требуют создания бегущего вдоль канала магнитного поля. Возможны различные формы каналов: линейная - общая для кондукционных и индукционных М. г.; дисковая и коаксиальная холловекая - в конАукционных; радиальная - в индукционных М. г. По системам соединений электродов различают: фарадеевский генератор со сплошными или секционированными электродами (рис. 2, а), холловский генератор (рис. 2, б), в к-ром расположенные друг против друга электроды короткозамкнуты, а напряжение снимается вдоль канала за счёт наличия поля Холла, и сериесный генератор с диагональным соединением электродов (рис. 2, в). Секционирование самым направить носители зарядов перпендикулярно оси канала на электроды и в нагрузку; чем значительнее эффект Холла, тем на большее число секций необходимо разделить электроды, причём каждая пара электродов должна иметь свою нагрузку, что весьма усложняет конструкцию установки. Применение схемы холловского М. г. наиболее выгодно при больших магнитных полях. За счёт наличия продольного электрического поля в холловском и М. г. с диагональным соединением электродов можно получить значительное напряжение на выходе генератора. Наибольшее распространение в 70-х гг. получили кондукционные линейные М. г. на продуктах сгорания ископаемых топлив с присадками щелочных металлов, работающие по открытому циклу.

Рис. 2. Схемы соединения электродов в МГД-генераторах: а. - линейный фарадеевский генератор с секционированными электродами; б - линейный холловский генератор; в - сериесный генератор с диагональным соединением электродов.

Мощность М. г. пропорциональна проводимости рабочего тела, квадрату его скорости и квадрату напряжённости магнитного поля. Для газообразного рабочего тела в диапазоне темп-р 2000-3000 К проводимость пропорциональна темп-ре в 11-13-й степени и обратно пропорциональна корню квадратному из давления. Скорости потока в М. г. могут быть в широком диапазоне - от дозвуковых до сверхзвуковых. Индукция магнитного поля определяется конструкцией магнитов и ограничивается значениями около 2 тл для магнитов со сталью и до 6- 8 тл для сверхпроводящих магнитных систем.

Осн. преимущество М. г.- отсутствие в нём движущихся узлов или деталей, непосредственно участвующих в преобразовании тепловой энергии в электрическую. Это позволяет существенно увеличить начальную темп-ру рабочего тела и, следовательно, кпд электростанции. Если после М. г. поставить обычный турбоагрегат, то общий макс, кпд такой энергетич. установки достигнет 50-60%.

Отличит, особенностью М. г. является также возможность получения больших мощностей в одном агрегате - 500- 1000 Мет и сочетания их с паросиловыми блоками такой же мощности. Существуют три осн. направления возможного пром. применения М. г.: 1) ТЭС с М. г. (рис. 3) на продуктах сгорания топлива (открытый цикл); эти установки наиболее просты по своему принципу и имеют ближайшую перспективу пром. применения; 2) атомные электростанции с М. г. на инертном газе, нагреваемом в ядерном реакторе (закрытый цикл); перспективность этого направления зависит от развития ядерных реакторов с темп-рой рабочего тела св. 2000 К; 3) циклы с М. г. на жидком металле, к-рые весьма перспективны для атомной энергетики и для спец. энергетич. установок сравнительно небольшой мощности, однако существующие на 1972 проработки этих циклов не позволяют судить определённо об их использовании в пром. энергетике.

Рис. 3. Схема энергетической установки с МГД-генератором, работающей по открытому циклу: 1 - камера сгорания; 2 - теплообменник; 3 - канал МГД-генератора; 4 - обмотки электромагнита; 5 - парогенератор; 6- паровая турбина; 7 - электрический генератор; 8 - конденсатор; 9 - конденсатный насос.

Созданная в СССР опытно-пром. установка "У-25" - прототип ТЭС с М. г. Она работает на продуктах сгорания природного газа с добавкой К2СО3 в качестве ионизирующейся присадки, позволяющей при относительно невысоких темп-pax (около 3000 К) сделать продукты сгорания электропроводными. "У-25" имеет два контура: первичный, разомкнутый, в к-ром преобразование тепла продуктов сгорания в электрическую энергию происходит в М. г., и вторичный, замкнутый- паросиловой контур, использующий тепло продуктов сгорания вне канала М. г.

Установка работает по следующей тепловой схеме. ATM. воздух, обогащённый кислородом, сжимается в компрессоре и подаётся в воздухоподогреватели, откуда воздушно-кислородная смесь, нагретая до нужной темп-ры, направляется в камеру сгорания. Перед камерой сгорания в воздушный поток впрыскивается водный раствор легкоионизирующейся присадки. Ионизированные продукты сгорания разгоняются в сопле и поступают в канал М. г. Канал М. г. размещён в рабочем зазоре магнитной системы с индукцией 2 тл. Из канала М. г. продукты сгорания поступают в парогенератор и отдают своё тепло паросиловому циклу, затем при темп-ре 420-450 К они направляются в систему удаления присадки и после очистки выбрасываются в атмосферу. Электрическое оборудование "У-25" состоит из М. г. и инверторной установки, собранной на ртутных игнитронах. Устойчивость совместной работы М. г. и многоэлементной инверторной установки обеспечивается системой автоматического регулирования. "У-25" обеспечена телеметрической системой управления и контроля. Полученные экспериментальные данные обрабатываются ЭВМ.

Энергетич. установки с М. г. могут применяться также как резервные или аварийные источники энергии в энергосистемах, для космич. техники (бортовые системы питания), в качестве источников питания различных устройств, требующих больших мощностей на короткие промежутки времени (напр., для питания электроподогревателей аэродинамич. труб и т. п.).

К нач. 70-х гг работы по проблеме МГД-метода преобразования энергии вышли за рамки научного поиска и создания небольших лабораторных исследоват. установок и вступили в стадию строительства опытно-пром. электростанций. Накоплен обширный фактич. материал по результатам научно-исследовательских и проектно-конструкторских работ в области М. г. Для обмена информацией, анализа состояния и оценки перспектив развития М. г. было проведено неск. международных симпозиумов и нац. конференций; в 1966 была основана Международная группа связи по вопросам МГД-метода преобразования энергии, куда вошли представители Австралии, Австрии, Англии, Бельгии, Италии, Нидерландов, ПНР, СССР, США, Франции, ФРГ, ЧССР, Швейцарии и Швеции.

Лит.: Фаворский О. Н., Установки для непосредственного преобразования тепловой энергии в электрическую, М., 1965; Роза Р., Магнитогидродинамическое преобразование энергии, пер. с англ., М., 1970; Магнитогидродинамический метод получения электроэнергии. [Сб. ст.], М., 1971. В. А. Прокудин.

МАГНИТОГИДРОДИНАМИЧЕСКИЙ HACОC, МГД-насос, электромагнитный насос, машина для подачи жидкости, являющейся проводником электричества (напр., жидких металлов). М. н. подразделяются на индукционные насосы и кондукционные насосы.

МАГНИТОГОРСК, город в Челябинской обл. РСФСР. Расположен у подножия горы Магнитной, на вост. склоне Юж. Урала, по обоим берегам р. Урал. Один из крупнейших центров металлургич. пром-сти СССР. В 1930 проведена ж.-д. линия, связавшая М. со станцией Карталы (на линии Троицк - Орск). Население 379 тыс. чел, (1973; 146 тыс. чел. в 1939; 311 тыс. чел. в 1959). Имеется 3 городских р-на. Возник в 1929-31 в связи со стр-вом Магнитогорского металлургического комбината. Важнейшие предприятия (кроме металлургич. комбината): з-ды калибровочный, крановый, по ремонту горного и металлургич. оборудования, метизно-металлургич.; развита пром-сть стройматериалов, лёгкая и пищевая (швейная и обувная ф-ки, молочный з-д, мясокомбинат и др.). Город получает газ по газопроводу Средняя Азия-Урал.Стр-во М. начиналось на лев. берегу р. Урал, где был создан проспект Пушкина с гостиницей (1929), зданием горкома КПСС (1934, арх. П. И. Бронников), Дворцом металлургов (1936, арх. П. И. Бронников, М. Куповской). Жилая застройка - замкнутые кварталы вдоль магистралей и регулярно распланированные посёлки с индивидуальными жилыми домами. С 1945 застраивается правый берег (ген. план 1940 переработан в 1945-48 ин-том "Ленгипрогор", арх. Ю. М. Киловатов и др., проект детальной планировки-арх. Л. О. Бумажный и др.), связанный с левым тремя магистралями с мостами-дамбами через водохранилище (на р. Урал), к-рому параллельны гл. улицы Правобережья. В его центре-площадь, связанная лучевыми улицами (гл.- проспект Металлургов; илл. см. т. 7, табл. XIV, стр. 208- 209) с парком. Вначале создавались небольшие и замкнутые жилые кварталы с малоэтажной застройкой, после 1953 - микрорайоны с домами в 4-5 этажей. Построены Дом Советов, театр, концертный зал, новый Дворец металлургов, стадион.

Новые жилые дома на проспекте К. Маркса.

В М.- горно-металлургич. и педагогич. ин-ты, 8 средних спец. уч. заведений, драматич. и кукольный театры, краеведч. музей. 28 янв. 1971 город награждён орденом Трудового Красного Знамени.

Лит.: Сержантов В. Г., Магнитогорск, Челябинск, 1955; Казаринова В. И., Павличенков В. И., Магнитогорск, М., 1961; Из истории Магнитогорского металлургического комбината и города Магнитогорска. (1929 - 1941). Сб. документов и материалов, Челябинск, 1965; Магнитка. Краткий исторический очерк, Челябинск, 1971.

МАГНИТОГОРСКИЙ МЕТАЛЛУРГИЧЕСКИЙ КОМБИНАТ и м. В. И.Ленина, крупнейшее в СССР и одно из самых крупных в мире предприятий чёрной металлургии в г. Магнитогорске Челябинской обл. РСФСР. Начал строиться в 1929 у подножия горы Магнитной как составная часть угольно-металлургич. базы на востоке - Урало-Кузбасса. 15 мая 1931 вступил в строй рудник, 31 янв. 1932 задута первая доменная печь, 8 июля 1933 пущена первая мартеновская печь, 28 июля 1933 вступил в строй блюминг, в нояб. 1933 - непрерывно-заготовочный стан, в авг. 1934- крупносортный прокатный стан 500. 11 апр. 1970 комбинату присвоено имя В. И. Ленина. Осн. железорудная база комбината - гора Магнитная и Соколовско-Сарбайский горно-обогатит. комбинат (Кустанайская обл. Казах. ССР). В состав комбината входят горнорудное произ-во, коксохимич. цех, агломерац. ф-ки, доменный и мартеновские цехи, обжимные, сортопрокатные и листовые станы горячей прокатки, цехи по произ-ву холоднокатаного стального листа, белой жести, оцинкованного листа, эмалированной и оцинкованной посуды, огнеупоров, вспомогат. цехи. За 1946-70 произ-во чугуна возросло в 3,8 раза, стали в 4,3 раза и проката в 4,5 раза. За годы существования комбинат произвёл (на дек. 1971) 173,4 млн т чугуна, 217,4 млн. m стали, 170,8 млн. то проката. Удельный вес продукции комбината в произ-ве чёрных металлов в СССР в 1971 составил по чугуну 11%, стали - 10,6%, прокату - 10,5%. М. м„ к.- одно из самых рентабельных предприятий отрасли. Награждён 2 орденами Ленина (1943 и 1971) и орденом Трудового Красного Знамени (1945).

Лит.: Петров Ю., Магнитка, М., 1971. м. Е. Чурилин.

МАГНИТОГРАФ (от греч. magnetis- магнит и ...граф), прибор, непрерывно регистрирующий изменения земного магнитного поля во времени (магнитные вариации). М. состоит из вариометров магнитных и регистрирующего (записывающего) устройства. Самый простой М. содержит фоторегистратор, осветитель и 3 оптико-механич. вариометра, чувствительным элементом к-рых является магнитная стрелка (с зеркалом), подвешенная на упругой нити. Такой М. регистрирует на ленте (фотоплёнке или фотобумаге) вариации 3 ортогональных компонентов магнитного поля Земли с периодами от неск. секунд до неск. месяцев с точностью ~ 10-5 э (см. Земной магнетизм). Полученная магнитограмма несёт информацию о времени, амплитуде и периоде магнитных вариаций (см. Вариации магнитные). М. могут быть оснащены оптикомеханич. вариометрами с фотоэлектрич. преобразователем угла поворота магнитной стрелки, магнитонасыщенными, индукционными, протонными, квантовыми и сверхпроводящими преобразователями с электрич. сигналом на выходе, частота или амплитуда к-рого пропорциональна амплитуде магнитной вариации (см. Магнитометры).
[1513-11.jpg]

* 1 э= 79,6 а/м.

Регистрирующими устройствами таких М. могут служить: частотомеры, цифровые вольтметры с цифропечата-ющим устройством, перопишущие электрич. потенциометры, магнитофоны, перфораторы и др. Показания М. кодируются и обрабатываются на электронно-вычислительных машинах. Чувствительность М. в значит, степени определяется технич. возможностями используемых вариометров.

Лит.: Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л.. 1964. Ю. А. Бурцев.

МАГНИТОГРАФ СОЛНЕЧНЫЙ, прибор для измерения магнитного поля на Солнце. Впервые был применён амер. астрономом X. Бабкоком в 1952 для регистрации продольной составляющей магнитного поля, а в последующие годы усовершенствован в СССР. Осн. элементы М. с.: электрооптический светрмодулятор, спектрограф, светоприёмники (фотоумножители), записывающее устройство. Метод измерения основан на Зеемана эффекте, в результате к-рого спектральная линия расщепляется на две о-компоненты, поляризованные по кругу в противоположных направлениях. Изображение Солнца фокусируется на щель спектрографа, за к-рой установлен электрооптич. кристалл в комбинации с поляризатором. Под действием переменного электрич. напряжения устройство пропускает ст-компоненты, поочерёдно сдвигая линию на величину 2ДХ (см. рис.). В фокальной плоскости спектрографа свет от крыла линии проходит через щель и падает на фотоумножитель, соединённый с усилителем, переменный сигнал к-рого регистрируется. Заштрихованная на рис. площадь пропорциональна изменению интенсивности света, проходящего через щель, при очередном пропускании поляризованных компонент линий б1 и б2. При небольших расщеплениях сигнал М. с. пропорционален напряжённости продольного поля.

Схема М. с. для измерения поперечного поля разработана сов. астрономами А. Б. Северным и В. Е. Степановым в 1959. В этом варианте М. с. перед щелью спектрографа помещается фазовая пластинка, превращающая линейную поляризацию света в круговую. Имеется конструкция М. с.- так наз. солнечный вектор-магнитограф, с помощью к-рого измеряются одновременно все три компоненты поля. М. с. обычно снабжены устройством для составления карт магнитного поля Солнца, яркости и скорости движения вещества на отдельных участках или на всей поверхности Солнца. Чувствительность современных М. с. 0,3-1 гс для продольного и 50-100 гс для поперечного магнитного поля.

Лит.: Степанов В. Е., Северный А. Б., фотоэлектрический метод измерения величины и направления магнитного поля на поверхности Солнца, "Изв. Крымской астрофизической обсерватории", 1962, т. 28; Solar magnetic fields, ed. R. Howard, Dordrecht, 1971. В. А. Котов.



МАГНИТОГРАФИЯ (от греч. magnetis - магнит и ...графил), ф е р р о г р а ф и я, способ получения на обычной бумаге буквенных) цифровых и др. отпечатков при помощи магнитного порошка. Наиболее часто М. реализуется по т. н. схеме с промежуточным магнитным носителем. На приведённой схеме печатающего устройства промежуточным носителем служит магнитный барабан, по окружности к-рого последовательно расположены магнитные записывающие головки, узел проявления, прижимной ролик, узел очистки и стирающая головка. В процессе работы устройства магнитный барабан вращается равномерно; в его магнитном слое образуется скрытое магнитное изображение записываемого знака в виде мозаики из отд. магнитных отпечатков, созданных соответствующими магнитными головками записи. В узле проявления к намагниченным участкам поверхности барабана притягиваются частицы ферромагнитного порошка, образуя видимое изображение записанных знаков. Соприкасаясь с бумагой, порошок "прилипает" к её поверхности. Полученные таким образом отпечатки закрепляются, в простейшем случае вдавливанием частиц порошка в бумагу при прокатке между валками. Для лучшего сцепления с бумагой ферромагнетик покрывают термопластичной смолой, а валки нагревают. При прокатывании бумаги через валки смола расплавляется и прочно спаивает порошковое изображение с бумагой. Оставшийся на магнитном барабане после переноса изображения на бумагу порошок снимается в узле очистки меховыми щётками и струёй воздуха, а скрытое магнитное изображение стирается магнитной головкой - барабан готов к новой записи. Если требуется получить неск. копий, скрытые магнитные изображения знаков не стирают; процесс печати может быть повторен практически неограниченное число раз. Минимальный размер отпечатка знака, получаемый при М., составляет 2X3 мм, скорость печати на устройстве, выполненном по рассмотренной схеме, обычно составляет 6000 строк/мин, но может быть значительно увеличена. Основное применение М.-печатающие устройства для вывода информации из ЭВМ.

Схема устройства для магнитографии: 1 - магнитный барабан; 2 - магнитный слой барабана; 3 - блок магнитных записывающих головок; 4 - скрытое магнитное изображение; 5 - ферромагнитный порошок; 6 - порошковое изображение; 7 - бумага; 8 - прижимной ролик; 9 - порошковое изображение на бумаге; 10 - обжимные валики; 11 - узел очистки; 12 - магнитная стирающая головка.

Лит.: Арутюнов М. Г., Патрунов В. Г., феррография - магнитная скоростная печать, М.- Л., 1964; Арутюнов М. Г., Маркович В. Д., Скоростной ввод - вывод информации, М., 1970. М. Г. Арутюнов.

МАГНИТОДВИЖУЩАЯ СИЛА, намагничивающая сила, величина, характеризующая магнитное действие электрического тока. Вводится при расчётах магнитных цепей по аналогии с электродвижущей силой в электрич. цепях. М. с. F равна циркуляции вектора напряжённости магнитного поля Н по замкнутому контуру L, охватывающему электрич. токи, к-рые создают это магнитное поле:
[1513-12.jpg]

проекция Н на направление элемента контура интегрир