загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

стью и глубиной общих идей, что сближало М. с философией. К началу 18 в. развитие новых областей М., созданных в 17 в., достигло того уровня, при к-ром дальнейшее продвижение вперёд стало требовать в первую очередь искусства в овладении математич. аппаратом и изобретательности в разыскании неожиданных обходных решений трудных задач. Из двух величайших математиков 18 в. Л. Эйлер является наиболее ярким представителем этой виртуозной тенденции, а Ж. Лагранж, быть может, уступая Л. Эйлеру в количестве и разнообразии решённых задач, соединил блестящую технику с широкими обобщающими концепциями, типичными для франц. матем. школы 2-й пол. 18 в., тесно связанной с большим филос. движением франц. просветителей и материалистов. Увлечение необычайной силой аппарата матем. анализа приводит, естественно, к вере в возможность его чисто автоматич. развития, в безошибочность матем. выкладок даже тогда, когда в них входят символы, лишённые смысла. Если при создании анализа бесконечно малых сказывалось неумение логически справиться с идеями, имевшими полную наглядную убедительность, то теперь открыто проповедуется право вычислять по обычным правилам лишённые непосредственно смысла математич. выражения, не опираясь ни на наглядность, ни на к.-л. логич. оправдание законности таких операций. Из старшего поколения в эту сторону всё больше склоняется Г. Лейбниц, к-рый в 1702 по поводу интегрирования рациональных дробей при помощи их разложения на мнимые выражения говорит о "чудесном вмешательстве идеального мира" и т. п. Более реалистически настроенный Л. Эйлер не говорит о чудесах, но воспринимает законность операций с мнимыми числами и с расходящимися рядами как эмпирич. факт, подтверждаемый правильностью получаемых при помощи подобных преобразований следствий. Хотя работа по рациональному уяснению основ анализа бесконечно малых была начата, систематическое проведение логич. обоснования анализа было осуществлено лишь в 19 в.

Если виднейшие математики 17 в. очень часто были в то же время философами или физиками-экспериментаторами, то в 18 в. научная работа математика становится самостоятельной профессией. Математики 18 в.- это люди из разных кругов общества, рано выделившиеся своими математич. способностями, с быстро развивающейся академич. карьерой (Л. Эйлер, происходя из пасторской семьи в Базеле, в возрасте 20 лет был приглашён адъюнктом в Петерб. академию наук, 23 лет становится там же профессором, 39 лет - председателем физико-математич. класса Берлинской академии наук; Ж. Лагранж - сын французского чиновника, 19 лет - профессор в Турине, 30 лет - председатель физико-математич. класса Берлинской академии наук; П. Лаплас - сын франц. крестьянина, 22 лет - профессор военной школы в Париже, 36 лет - член Парижской академии наук). При этом, однако, математич. естествознание (механика, математич. физика) и технич. применения М. остаются в сфере деятельности математиков. Л. Эйлер занимается вопросами кораблестроения и оптики, Ж. Лагранж создаёт основы аналитич. механики, П. Лаплас, считавший себя в основном математиком, также является крупнейшим астрономом и физиком своего времени и т. д.

М. 18 в. обогатилась многими выдающимися результатами. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематич. науки. Ж. Лагранж дал (1769, опубл. в 1771) общее решение неопределённых уравнений второй степени. Л. Эйлер установил (1772, опубл. в 1783) закон взаимности для квадратичных вычетов. Он же привлёк (1737, 1748, 1749) для изучения простых чисел дзета-функцию, чем положил начало аналитич. теории чисел.

При помощи разложений в непрерывные дроби Л. Эйлер доказал (1737, опубл. в 1744) иррациональность е и ё2, а И. Ламберт (1766, опубл. в 1768) - иррациональность я. В алгебре Г. Крамер (1750) ввёл для решения систем линейных уравнений определители. Л. Эйлер рассматривал как эмпирически установленный факт существование у каждого алгебраич. уравнения корня вида

А + В на корень из -1. Постепенно укореняется убеждение, что вообще мнимые выражения (не только в алгебре, но и в анализе)_ всегда приводимы к виду А + В на корень из -1. Ж. Д'Аламбер доказал (1748), что модуль многочлена не может иметь минимума, отличного от нуля (т. н. лемма Д'Аламбера), считая это за доказательство существования корня у любого алгебраич. уравнения. Формулы А. Муавра и Л. Эйлера, связывающие показательную и тригонометрич. функции комплексных аргументов, привели к дальнейшему расширению применений комплексных чисел в анализе. И. Ньютон, Дж. Стирлинг, Л. Эйлер и П. Лаплас заложили основы конечных разностей исчисления. Б. Тейлор открыл (1715) свою формулу разложения произвольной функции в степенной ряд. У исследователей 18 в., особенно у Л. Эйлера, ряды становятся одним из самых мощных и гибких орудий анализа. С Ж. Д'Аламбера начинается серьёзное изучение условий сходимости рядов. Л. Эйлер, Ж. Лагранж и особенно А. Ле-жандр заложили основы исследования эллиптич. интегралов - первого вида неэлементарных функций, подвергнутого глубокому специальному изучению. Большое внимание уделялось дифференциальным уравнениям, в частности Л. Эйлер дал (1739, опубл. в 1743) первый метод решения линейного дифференциального уравнения любого порядка с постоянными коэффициентами, Ж. Д'Аламбер рассматривал системы дифференциальных уравнений, Ж. Лагранж и П. Лаплас развивали общую теорию линейных дифференциальных уравнений любого порядка. Л. Эйлер, Г. Монж и Ж. Лагранж заложили основы общей теории дифференциальных уравнений с частными производными первого порядка, а Л. Эйлер, Г. Монж и П. Лаплас - второго порядка. Специальный интерес представляет введение в анализ разложения функций в тригонометрич. ряды, т. к. в связи с этой задачей между Л. Эйлером, Д. Бернулли, Ж. Д'Аламбером, Г. Монжем и Ж. Лагранжем развернулась полемика по вопросу о понятии функции, подготовившая фундаментальные результаты 19 в. о соотношении между аналитич. выражением и произвольным заданием функции. Наконец, новым отделом анализа, возникшим в 18 в., является вариационное исчисление, созданное Л. Эйлером и Ж. Лагранжем. А. Муавр, Я. Бернулли, П. Лаплас на основе отд. достижений 17-18 вв. заложили начала вероятностей теории.

В области геометрии Л. Эйлер привёл к завершению систему элементарной аналитич. геометрии. В работах Л. Эйлера, А. Клеро, Г. Монжа и Ж. Менье были заложены основы дифференц. геометрии пространственных кривых и поверхностей. И. Ламберт развил теорию перспективы, а Г. Монж придал окончательную форму начертательной геометрии.

Из приведённого обзора видно, что М. 18 в., основываясь на идеях 17 в., по размаху работы далеко превзошла предыдущие века. Этот расцвет М. был связан по преимуществу с деятельностью академий; университеты играли меньшую роль. Отдалённость крупнейших математиков от университетского преподавания возмещалась той энергией, с к-рой все они, начиная с Л. Эйлера и Ж. Лагранжа, писали учебники и обширные, включающие отдельные исследования, трактаты.

III. СОВРЕМЕННАЯ МАТЕМАТИКА Все созданные в 17 и 18 вв. разделы математич. анализа продолжали с большой интенсивностью развиваться в 19 и 20 вв. Чрезвычайно расширился за это время и круг их применений к задачам, выдвигаемым естествознанием и техникой. Однако, помимо этого количественного роста, с последних лет 18 в. и в нач. 19 в. в развитии М. наблюдается и ряд существенно новых черт.

1. Расширение предмета математики Накопленный в 17 и 18 вв. огромный фактич. материал привёл к необходимости углублённого логич. анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрия, интерпретации комплексных чисел [датский землемер К. Вессель, 1799, и франц. математик Ж. Арган (Арганд), 1806], доказательство неразрешимости в радикалах общего алгебраич. уравнения пятой степени (Н. Абель, 1824), разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским (1826, опубл. в 1829-30) и Я. Больяй (1832) неевклидовой геометрии, работы К. Гаусса (1827) по внутренней геометрии поверхностей - типичные примеры наметившихся на рубеже 18 и 19 вв. новых тенденций в развитии М.

Связь М. с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, но также из внутренних потребностей самой М. Таково в основном было развитие теории функций комплексного переменного, занявшей в начале и сер. 19 в. центральное положение во всём математич. анализе.

Другим замечательным примером теории, возникшей в результате внутреннего развития самой М., явилась "воображаемая геометрия" Лобачевского (см. Лобачевского геометрия).

Можно привести ещё один пример того, как начавшийся в конце 18 в. и 1-й пол. 19 в. пересмотр с более общих точек зрения добытых ранее конкретных математич. фактов нашёл во 2-й пол. 19 в. и в 20 в. мощную поддержку в новых запросах естествознания. Теория групп ведёт своё начало с рассмотрения Ж. Лагранжем (1771) групп подстановок в связи с проблемой разрешимости в радикалах алгебраич. уравнений высших степеней. Э. Галуа (1830-32, опубл. в 1832, 1846) при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраич. уравнений любой степени. В сер. 19 в. А. Кэли дал общее "абстрактное" определение группы. С. Ли разработал, исходя из общих проблем геометрии, теорию непрерывных групп. И лишь после этого Е. С. Фёдоров (1890) и нем. учёный А. Шёнфлис (1891) установили, что теоретико-групповым закономерностям подчинено строение кристаллов; ещё позднее теория групп становится мощным средством исследования в квантовой физике.

В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного исчисления и тензорного исчисления. Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.

Таким образом, в результате как внутренних потребностей М., так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых М., чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, всё разнообразие форм пространств любого числа измерений и т. п. При таком широком понимании терминов "количественные отношения" и "пространственные формы" приведённое в начале статьи определение М. применимо и на новом, современном этапе её развития.

Существенная новизна начавшегося в 19 в. этапа развития М. состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, напр., введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие М. потребовало выработки приёмов сознательного и планомерного создания новых геометрических систем, новых "алгебр" с "некоммутативным" или даже "неассоциативным" умножением и т. д. по мере возникновения в них потребности. Так, вопрос о том, не следует ли, напр., ради анализа и синтеза того или иного типа релейно-контактных схем создать новую "алгебру" с новыми правилами действий, является не вызывающим особого удивления делом повседневной научно-технич. практики. Но трудно переоценить важность той перестройки всего склада математич. мышления, к-рая для этого должна была произойти в течение 19 в. С этой, идейной стороны наиболее значительным среди открытий нач. 19 в. явилось открытие неевклидовой геометрии Лобачевского. Именно на примере этой геометрии была преодолена вера в незыблемость освящённых тысячелетним развитием М. аксиом, была понята возможность создания существенно новых математич. теорий путём правильно выполненной абстракции от налагавшихся ранее ограничений, не имеющих внутренней логич. необходимости, и, наконец, было обнаружено, что подобная абстрактная теория может получить со временем всё более широкие, вполне конкретные применения.

Чрезвычайное расширение предмета М. привлекло в 19 в. усиленное внимание к вопросам её "обоснования", т. е. критич. пересмотру её исходных положений (аксиом), построению строгой системы определений и доказательств, а также критич. рассмотрению логич. приёмов, употребляемых при этих доказательствах. Работы по строгому обоснованию тех или иных отделов М. справедливо занимают значительное место в М. 19 и 20 вв. В применении к основам анализа (теория действительных чисел, теория пределов и строгое обоснование всех приёмов дифференциального и интегрального исчисления) результаты этой работы с большей или меньшей полнотой излагаются в настоящее время в большинстве учебников (даже чисто практич.характера). Однако до последнего времени встречаются случаи, когда строгое обоснование возникшей из практич. потребностей математич. теории запаздывает. Так в течение долгого времени уже на рубеже 19 и 20 вв. было с операционным исчислением, получившим весьма широкие применения в механике и электротехнике. Лишь с большим запозданием было построено логически безупречное изложение математич. теории вероятностей. И в настоящее время ещё отсутствует строгое обоснование многих математич. методов, широко применяемых в современной теоретич. физике, где много ценных результатов получается при помощи "незаконных" математич. приёмов.

Стандарт требований к логич. строгости, остающийся господствующим в практич. работе математиков над развитием отдельных математич. теорий, сложился только к концу 19 в. Этот стандарт основан на теоретико-множественной концепции строения любой математич. теории (см. Множеств теория, Аксиоматический метод). С этой точки зрения любая математич. теория имеет дело с одним или несколькими множествами объектов, связанных между собой нек-рыми отношениями. Все формальные свойства этих объектов и отношений, необходимые для развития теории, фиксируются в виде аксиом, не затрагивающих конкретной природы самих объектов и отношений. Теория применима к любой системе объектов с отношениями, удовлетворяющей положенной в её основу системе аксиом. В соответствии с этим теория может считаться логически строго построенной только в том случае, если при её развитии не используется никаких конкретных, не упомянутых в аксиомах, свойств изучаемых объектов и отношений между ними, а все новые объекты или отношения, вводимые по мере развития теории сверх упомянутых в аксиомах, формально определяются через эти последние.

Другую сторону строения любой математич. теории освещает математич. логика. Система аксиом в изложенном выше (теоретико-множественном) понимании лишь ограничивает извне область применений данной математич. теории, указывая свойства подлежащей изучению системы объектов с отношениями, но не даёт никаких указаний относительно логич. средств, при помощи к-рых эту математич. теорию придётся развивать. Напр., свойства системы натуральных чисел с точностью до изоморфизма задаются при помощи очень простой системы аксиом. Тем не менее решение вопросов, ответ на к-рые в принципе однозначно предопределён принятием этой системы аксиом, оказывается часто очень сложным: именно теория чисел изобилует давно поставленными и очень простыми по формулировке проблемами, не нашедшими и до настоящего времени решения. Возникает, естественно, вопрос о том, происходит ли это только потому, что решение нек-рых просто формулируемых проблем теории чисел требует очень длинной цепи рассуждений, составленной из известных и уже вошедших в употребление элементарных звеньев, или же потому, что для решения нек-рых проблем теории чисел необходимы существенно новые, не употреблявшиеся ранее приёмы логич. вывода.

Современная математич. логика дала на этот вопрос определённый ответ: никакая единая дедуктивная теория не может исчерпать разнообразия проблем теории чисел. Точнее, уже в пределах теории натуральных чисел можно сформулировать последовательность проблем p1, p2, ..., Рп, ... такого рода, что для любой дедуктивной теории среди этих проблем найдётся неразрешимая в пределах данной теории (К. Гёделъ). При этом под "дедуктивной теорией" понимается теория, к-рая развивается из конечного числа аксиом при помощи построения сколь угодно длинных цепей рассуждений, составленных из звеньев, принадлежащих к конечному числу фиксированных для данной теории элементарных способов логич. вывода.

Таким образом было обнаружено, что понятие математич. теории в смысле теории, охватываемой единой системой аксиом теоретико-множественного типа, существенно шире, чем логич. понятие дедуктивной теории: даже при развитии арифметики натуральных чисел неизбежно неограниченное обращение к существенно новым способам логич. рассуждений, выходящим за пределы любого конечного набора стандартизированных приёмов.

Все те результаты, к-рые могут быть получены в пределах одной дедуктивной теории, могут быть также получены вычислением, производимым по данным раз навсегда правилам. Если

для решения нек-рого класса проблем даётся строго определённый рецепт их вычислительного решения, то говорят о математич. алгоритме. С самого создания достаточно разработанной системы математических знаков проблемы построения достаточно общих и в то же время кратких алгоритмов занимали большое место в истории М. Но только в последние десятилетия в результате развития математич. логики начала создаваться общая теория алгоритмов и "алгоритмической разрешимости" математич. проблем. Практич. перспективы этих теорий, по-видимому, весьма велики, особенно в связи с современным развитием вычислит, техники, позволяющей заменить сложные математич. алгоритмы работой машин.

2. История математики в 19 в. и начале 20 в. Начало и середина 19 в. В нач. 19 в. происходит новое значит, расширение области приложений математич. анализа. Если до этого времени осн. отделами физики, требовавшими большого математич. аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получают широкое развитие важнейшие разделы механики непрерывных сред, из к-рых только гидродинамика несжимаемой идеальной жидкости была создана ещё в 18 в. Д. Бернулли, Л. Эйлером, Ж. Д'Аламбером и Ж. Лагранжем. Быстро растут и математич. запросы техники. В нач. 19 в.- это вопросы термодинамики паровых машин, технич. механики, баллистики. В качестве основного аппарата новых областей механики и математической физики усиленно разрабатывается теория дифференциальных уравнений с частными производными и особенно теория потенциала. В этом направлении работает большинство крупных аналитиков начала и середины века - К. Гаусс, Ж. Фурье, С. Пуассон, О. Коши, П. Дирихле, Дж. Грин, М. В. Остроградский. М. В. Остроградский заложил основы вариационного исчисления для функций нескольких переменных. В результате исследований по уравнениям математич. физики в работах Дж. Стокса и др. англ, математиков возникает векторный анализ.

Несмотря на господствовавшее в естествознании начала 19 в. механистич. убеждение в возможности описать все природные явления дифференциальными уравнениями, под давлением запросов практики получает значительное дальнейшее развитие теория вероятностей. П. Лаплас и С. Пуассон создают с этой целью новый мощный аналитич. аппарат. П. Л. Чебышев даёт строгое обоснование элементов теории вероятностей и доказывает свою знаменитую теорему (1867), объединившую в одной общей формулировке известные ранее формы закона больших чисел.

Как уже отмечалось, наряду с развитием работ, возникших из новых запросов естествознания и техники, чрезвычайное внимание математиков с самого начала 19 в. привлекают вопросы строгого обоснования анализа (О. Коши, 1821, 1823). Н. И. Лобачевский (1834) и, позднее, П. Дирихле (1837) отчётливо сформулировали определение функции как совершенно произвольного соответствия. В 1799 К. Гаусс опубликовал первое доказательство основной теоремы алгебры, осторожно формулируя, однако, эту теорему в чисто действительных терминах (разложимость действительного многочлена на действительные множители первой и второй степени). Лишь значительно позже (1831) К. Гаусс явно изложил теорию комплексных чисел.

На основе ясного понимания природы комплексных чисел возникает теория функций комплексного переменного. К. Гаусс очень много знал в этой области, но почти ничего не опубликовал. Общие основы теории были заложены О. Коши, теория эллиптич. функций была развита Н. Абелем и К. Якоби. Уже на этом этапе характерно, в отличие от чисто алгоритмич. подхода 18 в., сосредоточение внимания на выяснении своеобразия поведения функций в комплексной области и основных господствующих здесь геометрич. закономерностей (начиная с зависимости радиуса сходимости ряда Тейлора от расположения особых точек, открытой О. Коши). Этот в известном смысле слова "качественный" и геомет-рич. характер теории функций комплексного переменного ещё усиливается в сер. 19 в. у Б. Римана. Здесь оказывается,что естественным геометрич. носителем аналитич. функции в случае её многозначности является не плоскость комплексного переменного, а т. н. риманова поверхность, соответствующая данной функции. К. Вейерштрасс достигает той же общности, что и Б. Риман, оставаясь на почве чистого анализа. Однако геометрич. идеи Б. Римана оказываются в дальнейшем всё более определяющими весь стиль мышления в области теории функций комплексного переменного.

В период увлечения теорией функций комплексного переменного крупнейшим представителем интереса к конкретным вопросам теории функций в действительной области является П. Л. Чебышев. Наиболее ярким выражением этой тенденции явилась созданная (начиная с 1854) П. Л. Чебышевым, исходившим из запросов теории механизмов, теория наилучших приближений.

В алгебре после упомянутого доказательства неразрешимости в радикалах общего уравнения пятой степени (П. Руффини, Н. Абель) Э. Галуа показал, что вопрос о разрешимости уравнений в радикалах зависит от свойств связанной с уравнением группы Галуа (см. Галуа теория). Задача общего абстрактного изучения групп ставится А. Кэли. Следует отметить, что даже в алгебре всеобщее признание значения теории групп произошло только после работ К. Жордана в 70-х гг. От работ Э. Галуа и Н. Абеля берёт начало также понятие поля алгебраич. чисел, приведшее к созданию новой науки - алгебраич. теории чисел. На существенно новую ступень поднимается в 19 в. и разработка старых задач теории чисел, связанных с простейшими свойствами обычных целых чисел. К. Гаусс разрабатывает (1801) теорию представимости чисел квадратичными формами, П. Л. Чебышев получает (1848, 1850) основные результаты о плотности расположения в натуральном ряде простых чисел. П. Дирихле доказывает (1837) теорему о существовании бесконечного числа простых чисел в арифметич. прогрессиях и т. д.

Дифференциальная геометрия поверхностей создаётся К. Гауссом (1827) и К. М. Петерсоном (1853). Для выработки новых взглядов на предмет геометрии основное значение, как уже было указано, имело создание Н. И. Лобачевским неевклидовой геометрии. Параллельно развивалась, долгое время независимо от неевклидовой геометрии, проективная геометрия (Ж. Понселе, Я. Штейнер, К. Штаудт и др.), также связанная с существенным изменением старых взглядов на пространство. Ю. Плюккер строит геометрию, рассматривая в качестве основных элементов прямые, Г. Грасман создаёт аффинную и метрич. геометрию и-мерного векторного пространства.

Уже в гауссовской внутренней геометрии поверхностей дифференциальная геометрия по существу также освобождается от неразрывной связи с геометрией Евклида: то, что поверхность лежит в трёхмерном евклидовом пространстве, является для этой теории случайным обстоятельством. Исходя из этого, Б. Ри-ман создаёт (1854, опубл. 1866) концепцию w-мерного многообразия с метрич. геометрией, определяемой дифференциальной квадратичной формой. Этим было положено начало общей дифференциальной геометрии я-мерных многообразий (см. Римановы геометрии). Б. Риману же принадлежат и первые идеи в области топологии многомерных многообразий.

Конец 19 в. и начало 20 в. Лишь в начале 70-х гг. 19 в. Ф. Клейн находит модель неевклидовой геометрии Лобачевского, к-рая окончательно устраняет сомнения в её непротиворечивости. Ф. Клейн подчиняет (1872) всё разнообразие построенных к этому времени "геометрий" пространств различного числа измерений идее изучения инвариантов той или иной группы преобразований. В это же время (1872) работы по обоснованию анализа получают необходимый фундамент в виде строгой теории иррациональных чисел (Р. Дедекинд, Г. Кантор и К. Вейерштрасс). В 1879-84 публикуются основные работы Г. Кантора по общей теории бесконечных множеств. Только после этого могли быть сформулированы современные общие представления о предмете М., строении математич. теории, роли аксиоматики и т. д. Широкое их распространение потребовало ещё нескольких десятилетий (общее признание совр. концепции строения геометрии обычно связывается с выходом в свет в 1899 "Оснований геометрии" Д. Гильберта).

Дальнейшее углубление исследований по основаниям математики сосредоточивается на преодолении логич. трудностей, возникших в общей теории множеств, и на исследовании строения математич. теории и приёмов конструктивного решения Математич. задач средствами математич. логики. Эти исследования возрастают в большой самостоятельный отдел М.- математич. логику. Основы математич. логики создаются в 19 в. Дж. Булем, П. С. Порецким, Э. Шредером, Г. Фреге, Дж. Пеано я др. В нач. 20 в. в этой области получены большие достижения (теория доказательств Д. Гильберта; интуиционистская логика, созданная Л. Брауэром и его последователями). Чрезвычайное развитие, превосходящее предшествующие периоды не только по количеству работ, но также по совершенству и силе методов и окончательности результатов, получают в конце 19 в. и в нач. 20 в. все разделы М., начиная с самого старого из них - теории чисел. Э. Куммер, Л. Кронекер, Р. Дедекинд, Е. И. Золотарёв и Д. Гильберт закладывают основы совр. алгебраич. теории чисел. Ш. Эрмит в 1873 доказывает трансцендентность числа е, нем. математик Ф. Линдеман в 1882 - числа я, Ж. Адамар (1896) и Ш. Ла Балле Пуссен (1896) завершают исследования П. Л. Чебышева о законе убывания плотности расположения простых чисел в натуральном ряду. Г. Минковский вводит в теоретико-числовые исследования геометрич. методы. В России работы по теории чисел после П. Л. Чебышева блестяще развивают, кроме уже упомянутого Е. И. Золотарёва, А. Н. Коркин, Г. Ф. Вороной и А. А. Марков.

Центр тяжести алгебраич. исследований переносится в её новые области: теорию групп, полей, колец и т. д. Многие из этих отделов алгебры получают глубокие применения в естествознании: в частности, теория групп - в кристаллографии, а позднее - в вопросах квантовой физики.

На границе между алгеброй и геометрией С. Ли создаёт (начиная с 1873) теорию непрерывных групп, методы к-рой позднее проникают во все новые области М. и естествознания.

Элементарная и проективная геометрия привлекают внимание математиков гл. оор. под углом зрения изучения их логич. и аксиоматич. основ. Но основными отделами геометрии, привлекающими наиболее значительные научные силы, становятся дифференциальная и алгебраическая геометрия. Дифференц. геометрия евклидова трёхмерного пространства получает полное систематич. развитие в работах Э. Бельтрами, Г. Дарбу и др. Позднее бурно развивается дифференц. геометрия различных более широких (чем группа евклидовых движений) групп преобразований и особенно дифференц. геометрия многомерных пространств. Это направление геометрич. исследований, получившее мощный импульс к развитию с возникновением общей теории относительности, создано прежде всего работами Т. Леви-Чивита, Э. Картона и Г. Вейля.

В связи с развитием более общих точек зрения теории множеств и теории функций действительного переменного теория аналитических функций в конце 19 в. лишается того исключительного положения ядра всего математич. анализа, к-рое намечается для неё в начале и сер. 19 в. Однако она продолжает не менее интенсивно развиваться как в соответствии со своими внутренними потребностями, так и из-за обнаруживающихся новых связей её с др. отделами анализа и непосредственно с естествознанием. Особенно существенным в этом последнем направлении было выяснение роли конформных отображений при решении краевых задач для уравнений с частными производными (напр., задачи Дирихле для уравнения Лапласа), при изучении плоских течений идеальной жидкости и в задачах теории упругости.

Ф. Клейн и А. Пуанкаре создают теорию автоморфных функций, в к-рой находит замечательные применения геометрия Лобачевского. Э. Пикар, А. Пуанкаре, Ж. Адамар, Э. Борелъ глубоко разрабатывают теорию целых функций, что позволяет, в частности, получить уже упоминавшуюся теорему о плотности расположения простых чисел. Геометрич. теорию функций и теорию римановых поверхностей развивают А. Пуанкаре, Д. Гильберт и др. Конформные отображения находят применение в аэромеханике (Н. Е. Жуковский, С. А. Чаплыгин).

В результате систематич. построения математич. анализа на основе строгой арифметич. теории иррациональных чисел и теории множеств возникла новая отрасль М.-теория функций действительного переменного. Если ранее систематически изучались лишь функции, возникающие "естественно" из тех или иных специальных задач, то для теории функций действительного переменного типичен интерес к полному выяснению действительного объёма общих понятий анализа (в самом начале её развития Б. Болъцано и позднее К. Вейерштрассом было, напр., обнаружено, что непрерывная функция может не иметь производной ни в одной точке). Исследования по теории функций действительного переменного привели к общим определениям понятий меры множества, измеримых функций и интеграла, играющих важную роль в совр. М. Основы совр. теории функций действит. переменного заложили математики франц. школы (К. Жордан, Э. Борель, А. Лебег, Р. Бэр), позднее ведущая роль переходит к русской и советской школе (см. Функций теория).

Помимо своего непосредственного интереса, теория функций действит. переменного оказала большое влияние на развитие многих других отделов М. Выработанные в её пределах методы оказались особенно необходимыми при построении основ функционального анализа. Если в отношении методов функциональный анализ развивался под влиянием теории функций действительного переменного и теории множеств, то по своему содержанию и характеру решаемых в нём задач он примыкает непосредственно к классич. анализу и математич. физике, становясь особенно необходимым (гл. обр. в форме операторов теории) в квантовой физике. Впервые сознательное выделение функционального анализа как особой ветви М. было произведено В. Волътерра в конце 19 в. В качестве частей функционального анализа воспринимаются теперь возникшее много ранее вариационное исчисление и теория интегральных уравнений, систематич. построение к-рой было начато тем же В. Вольтерра и продолжено Э. Фредголъмом. Наиболее важный специальный случай операторов в гильбертовом пространстве, основная роль к-рого выяснилась из работ Д. Гильберта по интегральным уравнениям, разрабатывается особенно интенсивно.

Наибольшее число задач, выдвигаемых перед М. естествознанием и техникой, сводится к решению дифференциальных уравнений, как обыкновенных (при изучении систем с конечным числом степеней свободы), так и с частными производными (при изучении непрерывных сред и в квантовой физике). Поэтому все направления исследований дифференциальных уравнений в рассматриваемый период интенсивно культивируются. Для решения сложных линейных систем создаются методы операционного исчисления. При исследовании нелинейных систем с малой нелинейностью широко применяется метод разложения по параметру. Продолжает разрабатываться аналитич. теория обыкновенных дифференциальных уравнений (А. Пуанкаре и др.). Однако наибольшее внимание в области теории обыкновенных дифференциальных уравнений привлекают теперь вопросы качественного исследования их решений: классификация особых точек (А. Пуанкаре и др.), вопросы устойчивости, особенно глубоко изученные А. М. Ляпуновым.

Качественная теория дифференциальных уравнений послужила А. Пуанкаре отправным пунктом для широкого продолжения лишь едва намеченных Б. Риманом исследований по топологии многообразий, особенно в направлении изучения неподвижных точек их непрерывных отображений на самих себя. Здесь получили своё начало "комбинаторные", "гомологические" и "гомотопические" методы совр. топологии. Другое направление в топологии возникло на почве теории множеств и функционального анализа и привело к систематич. построению теории общих топологич. пространств.

Теория дифференциальных уравнений с частными производными ещё в конце 19 в. получает существенно новый вид благодаря сосредоточению основного внимания на краевых задачах и отказу от ограничения аналитическими краевыми условиями. Аналитич. теория, восходящая к О. Коши, К. Вейерштрассу и С. В. Ковалевской, не теряет при этом своего значения, но несколько отступает на задний план, т. к. обнаруживается, что при решении краевых задач она не гарантирует корректности, т. е. возможности приближённо найти решение, зная граничные условия тоже лишь приближённо, в то время как без этой возможности теоретич. решение не имеет практич. ценности. Картина более сложна, чем представлялось с точки зрения аналитич. теории: краевые задачи, к-рые можно корректно ставить для разных типов дифференциальных уравнений, оказываются различными (см. Корректные и некорректные задачи). Наиболее надёжным путеводителем в выборе для каждого типа уравнений надлежащих краевых задач становится непосредственное обращение к соответствующим физич. представлениям (о распространении волн, течении тепла, диффузии и т. п.). Связанное с этим превращение теории дифференциальных уравнений с частными производными гл. обр. в теорию уравнений математической физики имело большое положительное значение. Работы по отдельным типам уравнений математич. физики справедливо составляют значительную часть всей математич. продукции. После П. Дирихле и Б. Римана уравнениями математич. физики занимались А. Пуанкаре, Ж. Адамар, Дж. Рэлей, У. Томсон, К. Нейман, Д. Гильберт, а в России А. М. Ляпунов, В. А. Стеклов и др.

Существенным дополнением к методам дифференциальных уравнений при изучении природы и решении технич. задач являются методы теории вероятностей. Если в нач. 19 в. главными потребителями вероятностных методов были теория артиллерийской стрельбы и теория ошибок, то в конце 19 в. и в нач. 20 в. теория вероятностей получает много новых применений благодаря развитию статистич. физики и механики и разработке аппарата математической статистики. Наиболее глубокие теоретич. исследования по общим вопросам теории вероятностей в конце 19 в. ив нач. 20 в. принадлежат русской школе (П.Л.Чебышев, А. А. Марков, А. М. Ляпунов).

Практич. использование результатов теоретич. математич. исследования требует получения ответа на поставленную задачу в числовой форме. Между тем даже после исчерпывающего теоретич. разбора задачи это часто оказывается совсем не лёгким делом. В конце 19 в. и в нач. 20 в. численные методы анализа выросли в самостоятельную ветвь М. Особенно большое внимание уделялось при этом методам численного интегрирования дифференциальных уравнений (методы Адамса, Штёрмера, Рунге и др.) и квадратурным формулам (П. Л. Чебышев, А. А. Марков, В. А. Стеклов). Широкое развитие работ, требующих численных расчётов, привело к необходимости вычисления и публикации всё возрастающего количества таблиц математических.

Со 2-й пол. 19 в. начинается интенсивная разработка вопросов истории М. По материалам статьи А. Н. Колмогорова из 2-го издания БСЭ.

Заключение. Выше были отмечены основные особенности современной М. (п. 1) и были перечислены (п. 2) основные направления исследований М. по разделам, как они сложились в начале 20 в. В значительной мере это деление на разделы сохраняется, несмотря на стремительное развитие М. в 20 в., особенно после окончания 2-й мировой войны 1939-45. Современное состояние М. и заслуги научных школ и отдельных учёных отражены в соответствующих статьях. См. Чисел теория, Алгебра, Логика, Геометрия, Топология, Функций теория, Функциональный анализ, Дифференциальные уравнения, Уравнения математической физики, Вероятностей теория, Математическая статистика, Вычислительная математика.

Потребности развития самой М., "математизация" различных областей науки, проникновение математич. методов во многие сферы практич. деятельности, быстрый прогресс вычислит, техники приводят к перемещению основных усилий математиков внутри сложившихся разделов М. и к появлению целого ряда новых математич. дисциплин (см., напр., Алгоритмов теория, Информации теория, Игр теория, Операций исследование, см. также Кибернетика).

На основе задач теории управляющих систем, комбинаторного анализа, графов теории, теории кодирования возникла дискретная, или конечная математика.

Вопросы о наилучшем (в том или ином смысле) управлении физич. или меха-нич. системами, описываемыми дифференциальными уравнениями, привели к созданию математич. теории оптимального управления, близкие вопросы об управлении объектами в конфликтных ситуациях - к возникновению и развитию теории дифференциальных игр.

Исследования в области общих проблем управления и связанных с ними областях М. в соединении с прогрессом вычислит, техники дают основу для автоматизации новых сфер человеческой деятельности.

Советская М. занимает передовое место в мировой математич. науке. Во многих направлениях работы сов. учёных играют определяющую роль. Успехи дореволюционной русской М. были связаны с исследованиями отдельных выдающихся учёных и опирались на узкую базу. Научные математич. центры имелись в немногих городах (Петербург, Москва, Казань, Харьков, Киев). При этом основные достижения были связаны с работой петерб. школы. После Великой Октябрьской социалистич. революции ряд новых важных направлений возник в московской математич. школе. В дореволюционной России основными центрами математич. исследований являлись университеты (Петербургский, Московский, Казанский и др.). Развитие науч. исследований в области М. и её приложений после 1917 было самым тесным образом связано с развитием и укреплением АН СССР; эти исследования в значит, мере сконцентрированы в математических институтах АН СССР, АН союзных республик и ведущих ун-тах. Важной чертой развития М. в нашей стране является возникновение за годы Сов. власти многочисл. науч. школ в городах, где раньше не велось заметной работы в области М. Таковы матем. школы в Тбилиси, Ереване, Баку, Вильнюсе, Ташкенте, Минске, Свердловске и др. городах и созданная в 60-х гг. науч. школа в Академгородке, близ Новосибирска.

В зарубежных странах математич. исследования ведутся как в математич. ин-тах, так и в ун-тах (особенно в капиталистич. странах).

Ещё на рубеже 17-18 вв. появились первые математические общества, имеющиеся сейчас во многих странах. Обзорные доклады о мировых достижениях математич. науки и её приложений, а также сообщения о наиболее интересных работах отдельных учёных читаются и обсуждаются на происходящих раз в 4 года (начиная с 1898) международных математических конгрессах. Организация и поощрение между нар. сотрудничества в области М., подготовка научных программ междунар. математич. конгрессов и др. является задачей международного математического союза. Текущие математич. исследования (а также информация о математич. жизни в различных странах) публикуются в математических журналах, общее число к-рых (нач. 70-х гг. 20 в.) более 250.

Лит.: Философия и история математики. Колмогоров А. Н., Математика, в кн.: Большая Советская энциклопедия, 2 изд., т. 26, М., 1954; Математика, её содержание, методы и значение, т. 1-3, М., 1956; Ц е и т е н Г. Г., История математики в древности и в средние века, пер. с франц., 2 изд., М.-Л., 1938; его же, История математики в XVI и XVII веках, пер. с нем., 2 изд., М.- Л., 1938; В а н - д е р-В а р д е н Б. Л., Пробуждающаяся наука. Математика Древнего Египта, Вавилона, Греции, пер. с голл., М., 1959; Кольмай Э., История математики в древности, М., 1961; Юткевич А. П., История математики в средние века, М., 1961; В и л е и т н е р Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966; его же, Хрестоматия по истории математики, составленная по первоисточникам..., пер. с нем., 2 изд., М.- Л., 1935; Клейн Ф., Лекции о развитии математики в XIX столетии, пер. с нем., ч. 1, М.- Л., 1937; Рыбников К. А., История математики, т. 1-2, М., 1960- 1963; Бурбаки Н., Очерки по истории математики, пер. с франц., М., 1963; Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; История математики с древнейших времен до начала XIX столетия, т. 1-3, М., 1970- 1972; Cantor M., Vorlesungen liber Geschichte der Mathematik, 3 Aufl., Bd 1 - 4, Lpz., 1907 - 13.

Обзоры и энциклопедии. Виноградов И. М., Математика и научный прогресс, в кн.: Ленин и современная наука, кн. 2, М., 1970; Математика. [Сб. ст.], М.- Л., 1932 (Наука в СССР за 15 лет. 1917 -1932); Математика в СССР за тридцать лет. 1917-1947. Сб. ст., М.- Л. 1948; Математика в СССР за сорок лет. 1917 - 1957. Сб. ст т. 1, М., 1959; W е у 1 Н., A Half-century or mathematics, "American Mathematical Monthly", 1951, v. 58, № 8, p. 523 - 53; Энциклопедия элементарной математики, кн. 1-5, М.- Л., 1951 - 1966; Вебер Г. иВелыптейн И., Энциклопедия элементарной математики, пер. с нем., т. 1 - 3, 2 изд., Одесса, 1911 - 14; Enzyklopadie der mathematischen Wissenschaf-ten, mit Einschluss ihrer Anwendungen, Bd 1-6, Lpz., 1898 - 1934; тоже, 2 Aufl., Bd 1-, Lpz., 1950-; Encyclopedic des siences mathe-matiques pures et appliquees, t. 1 - 7, P.- Lpz., 1904-14; Mathematik, 6 Aufl., Lpz., 1971 (Kleine Enzyklopadie); Mathematisches Worterbuch, 2 Aufl., Bd 1-2, В.- Lpz., 1962.
МАТЕМАТИКИ И МЕХАНИКИ ИНСТИТУТ Уральского научного центра АН СССР, советское научно-исследовательское учреждение; находится в г. Свердловске. Основан в 1961 как Свердловское отделение Математического института им. В. А. Стеклова АН СССР, с 1971 - в составе Уральского науч. центра АН СССР. Осн. направления исследований: развитие математич. теории процессов управления; теоретич. исследования в области алгебры, дифференц. ур-ний и теории функций; разработка и решение задач на ЭВМ; развитие методов нелинейной механики; разработка математич. методов механики сплошной среды. Имеется аспирантура. Н. Н. Красовский.

МАТЕМАТИКИ ИНСТИТУТ Сибирского отделения АН СССР, советское научно-исследовательское учреждение; находится в г. Новосибирске. Основан в 1957. Задачи ин-та - разработка важных проблем математики и методов её приложений. Осн. направления исследований: алгебра и математич. логика, геометрия и топология, теория вероятностей, теория дифференц. ур-ний, теория функций и функциональный анализ, теоретич. физика, математич. экономика и теоретич. кибернетика. Имеется аспирантура. Издаются сб. трудов: "Алгебра и логика" (с 1962), "Оптимальное планирование" (с 1964), "Дискретный анализ" (с 1963). A.M. Ширшов.

МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ, весьма общий способ математич. доказательств и определений. Индуктивные доказательства основаны на т. н. принципе М. и., являющемся одной из основных математич. аксиом. Пусть, напр., требуется доказать для любого натурального (целого положительного) числа п формулу:

1+3 + 5 + ...+(2и-1) = и2. (1) При п = 1 эта формула даёт 1 = 12. Чтобы доказать правильность формулы при любом п, допускают, что её уже удалось доказать для нек-рого определённого числа N, т. е. предполагают, что

1+3 + 5+....+(2N-1) = №. (2) Далее, опираясь на сделанное допущение, пытаются доказать правильность формулы (1) для числа на единицу большего, т. е. для п = N + 1. В данном случае достаточно присоединить к сумме в левой части равенства (2) ещё одно слагаемое: (2N +1); тогда и правая часть равенства должна увеличиться на (2N + 1) и, следовательно,

1+3 + 5 + ....+(2ЛГ-1) + (2N+1) = = N2+(2N+1) = (N +1)2. Но тот же результат получится, если в формуле (1) заменить п на N + 1. Итак, из справедливости формулы (1) при п - N вытекает (каково бы ни было N) её правильность и при п = N + 1. Но при п = 1 формула (1) верна, следовательно, она верна также и при п = 2 = = 1 + 1, 3 = 2+1, 4 = 3+1, 5 = 4 + 1 и т. д. Так как последовательным прибавлением единицы можно получить (начиная с единицы) любое натуральное число, то формула (1) действительно верна при любом натуральном числе п. Как ни очевидна заключительная часть приведённого рассуждения, она опирается на нек-рую аксиому, не сводимую только к общим законам логики, но выражающую одно из основных свойств натуральных чисел. Общая формулировка этой аксиомы такова.

Принцип М. и. Пусть: 1) число единица обладает свойством А; 2) из того, что к.-л. натуральное число и обладает свойством А, вытекает, что и число п + 1 обладает свойством А. При таких условиях любое натуральное число обладает свойством А.

В разобранном выше примере свойство А числа п выражается так: "для числа п справедливо равенство (1)". Если принцип М. и. принят в качестве аксиомы, то каждое отд. доказательство, опирающееся на этот принцип, следует рассматривать как чисто дедуктивное. При доказательстве [напр., формулы (1)], основанном на этом принципе, не происходит заключения от частного к общему, т. к. одна из посылок (сам принцип М. и.) по меньшей мере столь же обща, как и заключение.

Принцип М. и., сформулированный выше, служит, как было показано, для доказательства математич. теорем. Помимо этого, в математике употребляются ещё т. н. индуктивные определения. Таково, напр., следующее определение членов ип геометрич. прогрессии с первым членом а и знаменателем q: 1) u1 = a, 2) un+1=unq.

Условия 1) и 2) однозначно определяют члены прогрессии ип для всех натуральных чисел п. Доказательство того, что это действительно так, может быть основано на принципе М. и.; в данном случае можно, однако, непосредственно получить выражение ипчерез п : ип = aqn-1.

Принцип М. и. можно заменить равносильными ему предложениями, напр, таким: если подмножество М множества всех натуральных чисел N содержит 1 и вместе с любым своим элементом т содержит и т+1, то М = N.

МАТЕМАТИЧЕСКАЯ КАРТОГРАФИЯ, картографическая дисциплина, изучающая теорию картографических проекций, преобразований их, методы изыскания проекций и способы рационального применения их на практике. Иногда в М. к. включают весь комплекс вопросов, относящихся к математич. обоснованию карт (компоновка карт, расчёт рамок и др.), а также способы и средства измерений на картах (см. Картометрия). М. к. тесно связана с математикой, геодезией, со всеми картографич. и др. дисциплинами. На первых этапах (6 в. до н. э. - 17 в. н. э.) развития М. к. изобретались, исследовались и использовались отд. картографич. проекции, затем (18 в.- нач. 20 в.) изучались также отд. классы проекций и др. совокупности их.

С сер. 20 в. успешно развивается теория создания новых методов получения различных (зачастую новых) классов или групп проекций, а также теория преобразований их. Методы совр. М. к. механизируются и автоматизируются, в частности используются ЭВМ для различных целей.

В М. к. различают прямую и обратную задачи. Прямая задача М. к. - исследование свойств картографич. проекций, заданных уравнениями вида x = f1(Ф,Л), у = f2(ф,Л), (1) где ф и Л - широта и долгота точки на земном эллипсоиде. Эта задача решается формулами теории искажений. Обратная задачам, к. имеет целью восстановление уравнений (1), или, более обще, нахождение проекций по заданным в них распределениям искажений. В процессе историч. развития М. к. использовались различные методы построения проекций: геометрич., аналитич., графоаналитич. и др., применимые, однако, к получению отд. проекций или довольно узких совокупностей их. Общий метод изыскания проекций, дающих в то же время решение обратной задачи М. к., следует из системы Эйлера - Урмаева
[1533-1.jpg]
где т и п - масштабы по меридианам и параллелям, е - угол между их изображениями, 7 - сближение меридианов. Это - система двух квазилинейных уравнений с частными производными 1-го порядка (напр., nф=dn/dф и т. п.). Она недоопределённая: уравнений - два, функций - четыре. Различные способы доопределения системы (2), выполняемые на основе априорного задания, нужного для практики размещения искажений, позволяют исследовать всевозможные классы проекций. С точки зрения анализа система (2) даёт необходимые и достаточные условия существования проекций с заданными в них распределениями искажений. Систему (2), формулы теории искажений и нек-рые их модификации относят к основным уравнениям М. к. При изысканиях новых проекций широко применяют методы численного анализа, теорию конформных и квазиконформных отображений, вариационное исчисление и др.

Система (2) приводит к генетической классификации кар-тографич. проекций, являющейся наиболее полной из всех классификаций и объемлющей известные и все мыслимые проекции. В её основе лежит понятие класса проекций как такой совокупности их, к-рая [после доопределения системы (2) уравнениями проекций в характеристиках] описывается определённой системой двух дифференциальных уравнений с частными производными 1-го порядка; напр., класс конформных проекций, класс проекций Эйлера и др. Системы классов проекций могут быть эллиптич., гиперболич. и др. типов, в соответствии с чем и проекции, ими описываемые, относятся к указанным типам, что имеет фундаментальное значение при изыскании проекций конкретных классов, проявляющееся в априорном предсказании нек-рых свойств новых проекций. Таким образом, М. к.- это своеобразный "арсенал" картографич. науки и картогра-фич. производства, в спец. "рубриках" к-рого находятся определённые классы и др. совокупности картографич. проекций. Для конкретного производственного задания оттуда может быть взята нужная проекция (или изыскана новая).

Одной из центральных проблем М. к. является задача построения наивыгоднейших картографич. проекций, т. е. проекций, в к-рых искажения в к.-л. смысле сведены к минимуму. Она полностью ещё не решена даже для хорошо известных классов проекций, хотя частными случаями этой задачи занимались многие известные учёные (Л. Эйлер, К. Гаусс, П. Л. Чебышев и др.). Проблема ставится двояко: для заданной области изыскивают проекции с минимумом искажений либо из всего мыслимого множества проекций (идеальные проекции), либо из определённого класса (наилучшие проекции класса). В обоих случаях задача с математич. точки зрения обращается в проблему приближения функций двух переменных. Но в последней также существуют различные постановки: обращаясь, напр., к теории наилучших приближений, говорят о наивыгоднейших проекциях минимаксного типа, а пользуясь теорией квадратических приближений, исследуют наивыгоднейшие проекции вариационного типа. Общая проблема построения наивыгоднейших картографич. проекций приводит к ряду новых экстремальных задач на условный минимакс и др. До конца исследован лишь случай наилучших конформных проекций. Согласно теореме Чебышева - Граве, наилучшей конформной проекцией (чебышевской) для данной области является та, крайняя изокола в к-рой совпадает с контуром изображаемой территории. В чебышевских проекциях искажения площадей наименее уклоняются от нуля. Как следствие, в них наименее уклоняются от нуля также модули логарифмов масштабов длин; отношение наибольшего масштаба к наименьшему минимально; минимальна также наибольшая кривизна изображений геодезич. линий; наконец, среднее квадратическое значение логарифмов масштаба длин также минимально. Такое сочетание различных положительных свойств у чебышевских проекций характерно для класса конформных проекций как наиболее простого (но и важного для практики) среди всех др. классов. Примером чебышевской проекции является стереографич. проекция, к-рая при изображении на плоскости сферического сегмента и при специальном выборе произвольной постоянной удовлетворяет условиям теоремы. Методика построения чебышевских проекций детально разработана и для произвольных территорий. Теорема Чебышева - Граве справедлива для ряда нек-рых др. классов проекций, неконформных, но эллиптич. типа.

Лит.: Соловьёв М. Д., Математическая картография, М., 1969; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968; его же, О современных задачах математической картографии, "Тр. Новосибирского ин-та инженеров геодезии, аэрофотосъемки и картографии", 1967, т. 20; К а в р ай с кий В. В., Современные задачи математической картографии. Тезисы доклада на шестой научной сессии ЛГУ, Л., 1949; Гинзбург Г. А., О задачах математической картографии в СССР в области мелкомасштабных карт, "Геодезия и картография", 1958, N° 12; Павлов А. А., Математическая картография, в сб.: Итоги науки и техники. Картография, т. 5, М., 1972, с. 53-66. Г.А.Мещеряков.


МАТЕМАТИЧЕСКАЯ ЛИНГВИСТИКА, математическая дисциплина, разрабатывающая формальный аппарат для описания строения естественных и нек-рых искусственных языков. Возникла в 50-х гг. 20 в. в связи с назревшей в языкознании потребностью уточнения его осн. понятий. В М. л. используются по преимуществу идеи и методы алгебры, .алгоритмов теории и автоматов теории. Не являясь частью лингвистики, М. л. развивается в тесном взаимодействии с ней. М. л. называют иногда лингвистич. исследования, в к-рых применяется к.-л. математич. аппарат.

Математич. описание языка основано на восходящем к Ф. де Соссюру представлении о языке как механизме, функционирование к-рого проявляется в речевой деятельности его носителей; её результатом являются «правильные тексты» - последовательности речевых единиц, подчиняющиеся определённым закономерностям, мн. из к-рых допускают математич. описание. Изучение способов математич. описания правильных текстов (в первую очередь предложений) составляет содержание одного из разделов М. л. - теории способов описания синтаксической структу-р ы. Для описания строения (синтак-сич. структуры) предложения можно либо выделить в нём «составляющие» -группы слов, функционирующие как цельные синтаксические единицы, либо указать для каждого слова те слова, к-рые от него непосредственно зависят (если такие есть). Так, в предложении «Лошади кушают овёс» при описании по 1-му способу составляющими будут: всё предложение /, каждое отд. слово и словосочетание С = «кушают овёс» (рис. 1; стрелки означают «непосредственное вложение»); описание по 2-му способу даёт схему, показанную на рис. 2

. Математические объекты, возникающие при таком описании структуры предложения, наз. деревом составляющих (1-й способ) и деревом синтаксического подчинения (2-й способ).

Другой раздел М. л., занимающий в ней центр, место,- теория формальных грамматик, возникшая гл. обр. благодаря работам Н. Хамского. Она изучает способы описания закономерностей, к-рые характеризуют уже не отд. текст, а всю совокупность правильных текстов того или иного языка. Эти закономерности описываются путём построения «формальной грамматики» -абстрактного «механизма», позволяющего с помощью единообразной процедуры получать правильные тексты данного языка вместе с описаниями их структуры. Наиболее широко используемый тип формальной грамматики — т. н. порождающая грамматика, или грамматика Хомского,- упорядоченная система Г = , где: V и W — непересекающиеся конечные множества; I — элемент W; R — конеч-

ное множество правил вида y -> ф, где y и ф - цепочки (конечные последовательности) элементов V и W. Если y -> ф -правило грамматики Г и w1, w2,- цепочки из элементов V и W, то говорят, что цепочка w1 ф w2 непосредственно выводима в Г из w1 y w2. Если E0, E1,...,En - цепочки и для каждого i = 1, ..., п цепочка E1 непосредственно выводима из Ei-1, то говорят, что En выводима из E0 в Г. Множество цепочек из элементов V, выводимых в Г из 1, наз. языком, порождаемым грамматикой Г. Если все правила грамматики Г имеют вид А -> ф, где А — элемент W, Г называется бесконтекстной, или контекстно-свободной. В лингвистич. интерпретации элементы V чаще всего представляют собой слова, элементы W — символы грамматич. категорий, I — символ категории «предложение». В бесконтекстной грамматике вывод предложения даёт для него дерево составляющих, в к-ром каждая составляющая состоит из слов, «происходящих» от одного элемента W, так что для каждой составляющей указывается её грамматич. категория. Так, если грамматика имеет в числе прочих правила I ->Sx, у, им Vy,

Vy -> VtySx, у' вин, S муж, ед, вин -> овёс, Sжен, мн, им-> лошади, Vtмн -> кушают, где Vy означает категорию «группа глагола в числе у», Vty - «переходный глагол в числе у», Sx,y,z - "существительное рода х в числе у и падеже Z" , то приведённое выше предложение имеет вывод, показанный на рис. 3, где стрелки идут из левых частей применяемых правил к элементам соответствующих правых частей.
Формальные грамматики используются для описания не только естественных, но и искусственных языков, в особенности языков программирования.

М. л. изучает также аналитические модели языка, в к-рых на основе тех или иных данных о речи, считающихся известными (напр., множества правильных предложений), производятся формальные построения, дающие нек-рые сведения о структуре языка. Приложение методов М. л. к конкретным языкам относится к области лингвистики (см. Языкознание).

Лит.: Хомский Н., Синтаксические структуры, в сб.: Новое в лингвистике, в. 2, М., 1962; Гладкий А. В.. Мельчук И. А., Элементы математической лингвистики, М., 1969; Маркус С., Теоретико-множественные модели языков, пер. с англ., М., 1970; Гладкий А, В., Формальные грамматики и языки, М., 1973. А. В. Гладкий.

МАТЕМАТИЧЕСКАЯ ЛОГИКА, логи ка, развиваемая математич. методом. Характерным для М. л. является использование формальных языков с точным синтаксисом и чёткой семантикой, однозначно