загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я



Форма некоторых собственных колебаний мембраны: а - прямоугольной, 6 -круглой. Стрелками указаны узловые линии; j, k - номера гармоник.

В технике М. наз. также тонкую гибкую пластинку, жёсткость к-рой на изгиб равна нулю. Обычно М. закрепляется по контуру, на к-ром создаётся натяжение, обеспечивающее работу М. как упругой системы. Макс, прогиб М. под действием равномерно распределённой нагрузки интенсивностью р на единицу площади W, перекрываемой М., опреде-
[1604-5.jpg]

ное на единицу длины контура, а К - коэфф., зависящий от очертания М. в плане (для квадратной М. К = 0,080, для круглой - 0,078, для треугольной - 0,063). Расчёт М. при больших прогибах производится с учётом продольных деформаций; для круглой М. максимальный прогиб определяется по формуле:
[1604-6.jpg]

модуль продольной упругости материала М., h - толщина М.).

М. может быть изготовлена из различных материалов. Металлич. М. (фосфористая и бериллиевая бронзы, фольга, хромоникелевая сталь) применяются в анероидах, измерит, устройствах, работающих в условиях высоких темп-р, в телефонных трубках и звукозаписывающих устройствах (диктофонах). Не-металлич. М. (резина, кожа, корд, пластмассы, прорезиненная, хлопчатобумажная, капроновая, шёлковая ткань и т. п.) используются в качестве чувствит. элементов, преобразующих изменения давления в линейные перемещения в диф-манометрах, в устройствах пневмоавто-матики, в мембранных (диафрагменных) насосах, а также в качестве силовых элементов в исполнительных механизмах пневматических регулирующих клапанов.

 
1603.htm
МЕЛАМИН, 1, 3, 5-триамино-2, 4, 6-т р и а з и н; бесцветные кристаллы; Tпл 354 °С (с разложением); практически нерастворим в холодной воде и большинстве органич. растворителей.
[1603-1.jpg]

М.-основание, с кислотами образует соли (C3H6N6.HC1 и др.), разлагающиеся при нагревании. Получают М. из дицианди-амида(МН2- C = N)2 при темп-ре 180-500 "С и давлении 4-20 Мн/м2(40-200 кгс/см2). Применяют в произ-ве меламино-формалъдегидных смол (пластмассы, клеи, лаки), ионообменных смол, дубителей, гексахлормел-амина, используемого в произ-ве красителей и гербицидов.





1601.htm
МЁЗИЯ (Moesia), в древности страна между Ниж. Дунаем и Балканами, населённая фракийскими племенами (мёзы, геты, бессы и др.) С З. границей М. была р. Дрина, с В.- Чёрное м., на побережье к-рого в 7-6 вв. до н. э. возникли греч. колонии Одессос, Каллатия, Томы, Истрия и др. В 29-27 до н. э. была захвачена Римом. Зап. (Верхняя) М. тогда же перешла под управление римлян и не позже 15 н. э. стала рим. провинцией М.; Вост. (Нижняя) М. вошла в состав зависимой от Рима Фракии и была присоединена к провинции М. в 46. В 86 М. разделена на две провинции: Верхняя М. и Нижняя М. В кон. 3 в. Верхняя М. (М. I) вошла в диоцез М. (вместе с Македонией, Эпиром, Ахайей и о. Крит), а Нижняя М. (М. II) - в диоцез Фракия. В 4 в. М. I входила в диоцез Дакия. В 4 в. в М. оседают готы, в 6-7 вв. поселяются слав, племена.

Лит.: Златковская Т. Д., Мезия в 1 и 2 вв., М., 1951.

МЕЗО..., м е з... (от греч. mesos - средний, промежуточный), часть сложных слов, обозначающая ср. величину или промежуточное положение чего-либо (напр., мезодерма, мезолит).

МЕЗОАТОМ, атом, в к-ром один из электронов атомной оболочки замещён отрицательно заряженным мезоном, точнее, м- мюоном, либо п- или К~-мезона-ми. Существование М. было предсказано амер. физиком Дж. Уилером в 1949 вскоре после открытия л~-мезонов. В 1970 было доказано существование атомов, в к-рых электрон замещён Е~-гипероном, Е~-гипероном (см. Гипероны) или антипротоном. Радиусы М. в невозбуждённом состоянии равны Гц =5,3- lO-9/mZcM, где Z - порядковый номер ядра, а т приблизительно равно отношению массы мезона к массе электрона. Наиболее простыми М. являются М. водорода. Они состоят из ядра водорода и отрицательно заряженного мезона. Их радиусы соответственно равны: rм= 2,8-10-11 см, r = 2,2-10-11см rк = = 0,8-10-и см. Такие нейтральные системы малого размера, подобно нейтронам, свободно проникают внутрь электронных оболочек атомов, приближаются к их ядрам и могут служить причиной многочисленных мезоатомных процессов: образование м е з о-молекул, катализ. ядерных реакций, перехват мезона ядрами др. атомов и т. д. В М.мезоны расположены в сотни раз ближе к ядру, чем электроны. Напр., радиус ближайшей к ядру орбиты м~ в М. свинца почти в 2 раза меньше, чем радиус ядра свинца, т. е. в М. свинца м~ осн. часть времени проводит внутри ядра. Это обстоятельство позволяет использовать свойства М. с м~ для изучения формы и размеров ядер, а также для изучения распределения электрич. заряда по объёму ядра. л- -и К- -М., кроме того, используются для изучения сильных взаимодействий элементарных частиц и распределения нейтронов в ядрах (см. Ядро атомное).

Образование М. происходит, когда мезоны, получаемые в ускорителях высоких энергий, тормозятся и останавливаются в мишенях из различных веществ. Захват мезона на мезоатомную орбиту сопровождается выбросом одного из атомных электронов, обычно внешнего электрона. Напр., если пучок и~ направить в камеру с жидким водородом, то и~ теряют свою энергию в столкновениях с атомами водорода, пока их энергия не станет =<1 кэв. При этом, если они подходят близко к ядру атома водорода, они образуют с ним электрич. диполь, поле к-рого не в состоянии удержать атомный электрон, вследствие чего атом водорода теряет свой электрон, а м~ остаётся связанным с ядром (протоном, дейтроном или тритоном). Как правило, все М. образуются в высоковозбуждённых состояниях. В дальнейшем мезон переходит в менее возбуждённое состояние М., освобождая энергию в виде y-квантов(мезонное у~излучение) или Оже-электронов.

На процесс образования М. влияет строение электронной оболочки молекул, в состав к-рых входит соответствующий М. Это позволяет изучать электронную структуру молекул, исследуя рентгеновское излучение М. и продукты ядерных реакций с ядром М. Это направление исследований получило название мезонной химии.

Лит.: В айсенбергА. О.,Мю-мезон, М., 1964; К im Y. N., Mesic atoms and nuclear structure, Amst. - L., 1971; Б а р х о п Э., Экзотические атомы, "Успехи физических наук", 1972, т. 106, в. 3. Л. И. Пономарёв.

МЕЗОБЛACT (от мезо... и греч. blа-stos - росток, зародыш, побег), средний зародышевый листок; то же, что мезодерма.

МЕЗОГИППУС (Mesohippus) (от мезо... и греч. hippos - лошадь), род вымерших животных сем. лошадиных. Величиной с волка; конечности трёхпалые, все пальцы достигали земли, коренные зубы с низкой коронкой. Жили в лесах; питались в основном мягкой растительностью. Многочисленные остатки М. известны из олигоценовых отложений Сев. Америки.

МЕЗОГЛЕЯ (от мезо... и греч. gloios - липкое, клейкое вещество), бесструктурное студенистое вещество у низших многоклеточных двуслойных животных (губок и кишечнополостных); выделяется эктодермой и энтодермой и заполняет пространство между ними. У медуз и гребневиков М. сильно насыщена водой (до 97,5%), В М. губок имеются амёбовидные и половые клетки, клетки, образующие скелетные элементы, и др., придающие ей характер рыхлой паренхимы.

МЕЗОДЕРМА (от мезо... и греч. derma - кожа), мезобласт, средний зародышевый листок у многоклеточных животных (кроме губок и кишечнополостных) и человека. В результате гаструля-ции располагается между наружным зародышевым листком - эктодермой и внутренним - энтодермой. У первич-норотых животных (большинство беспозвоночных) М. образуется т е л о б л а-стическим способом - из крупных клеток - телобластов, лежащих между эктодермой и энтодермой в заднем конце зародыша и попадающих в процессе га-струляции в первичную полость тела, где они размножаются и превращаются в две мезодермальные полоски. У большинства вторичноротых животных - иглокожих, плеченогих, щетинкочелюстных, бесчерепных, круглоротых, рыб, земноводных - М. образуется энтероцель-н ы м способом: из отделяющихся участков стенки первичной кишки (ente-ron). У др. вторичноротых - пресмыкающихся, птиц и млекопитающих - благодаря вторичным изменениям процесса обособления зародышевых листков зачаток М. на стадии бластулы входит в состав первичного эктодермального слоя зародыша и лишь затем обособляется в третий зародышевый листок - М.

Рис. 1. Схема развития мезодермы у кольчатых червей: 1,2, 3 -последовательные стадии; а - эктодерма, 6 - энтодерма, в - мезодер-мальная полоска, г - сомит, д - целом, е -спинная брыжейка, ж - мускулатура, з - кишка, и - брюшная брыжейка, к - брюшные нервные стволы, л - внутренняя сгенка целома.

У плоских червей и немертин полоски М. дают начало соединит, ткани, заполняющей пространство между внутр. органами. У кольчатых червей (рис. 1) и членистоногих они расчленяются на парные сомиты со вторичной полостью тела, или целомом. За счёт стенок целома развиваются продольная мускулатура тела и выделит, органы. У разных групп позвоночных развитие М. протекает в основном сходно (рис. 2). В спинной части зародыша выделяется зачаток хорды. По обе стороны от него М. расчленяется на метамерные сомиты, к-рые сначала связаны с несегментированными брюшными отделами М.- боковыми пластинками (спланхнотомами) - узкими сегментными ножками, или нефротомами. Далее стенка каждого сомита дифференцируется на склеротом, дерматом и мио-том. Склеротомы образуют осевой скелет и соединит, ткань, дерматомы -соединительнотканный слой кожи, мио-томы - скелетную мускулатуру тела. Нефротомы дифференцируются в почечные канальцы предпочки, первичной почки, а затем (у высших позвоночных) вторичной почки, а также в протоки мочеполовой системы. Спланхнотомы расчленяются на 2 листка - внутренний (висцеральный) и наружный (париетальный), между к-рыми образуется целом. Висцеральный листок примыкает к энтодерме и даёт начало гладкой мускулатуре кишечника, кровеносным сосудам и клеткам крови, а также выстилке полости тела; париетальный листок примыкает к покровам и тоже выстилает целом. В эпителии спланхнотомов возникают половые валики - зачатки половых желез. Правая и левая боковые пластинки, срастаясь над кишечником, образуют брыжейку.

Рис. 2, Схема развития органов из мезодермы у высшего позвоночного (поперечный разрез зародыша): а - нервная трубка, 6 - дерматом, в - эктодерма, г - многом, д - склеротом, е - нефро-том, ж - наружный листок спланхното-ма, з - энтодерма, и - внутренний листок спланхнотома, к - эндотелий аорты, л - целом, м - хорда.

Лит.: Давыдов К. Н., Курс эмбриологии беспозвоночных, П. - К., 1914; Иванов П. П., Общая и сравнительная эмбриология, М.- Л., 1937; Ш м а л ь-гаузен И. И., Основы сравнительной анатомии, 4 изд., М., 1947; Ш м и д т Г. А., Эмбриология животных, ч. 1-2, М., 1951 -1953; Т о к и н Б. П., Общая эмбриология, М., 1970. Т. А. Детлаф, А. В. Иванов.

МЕЗОЗАВРЫ (Mesosauria), отряд вымерших пресноводных пресмыкающихся, иногда выделяемый в подкласс прогано-завров. Жили в позднем карбоне -ранней перми. Дл. тела ок. 1 м. Внешний облик ящерицеобразный: голова, шея и туловище удлинённые, хвост очень длинный, сжатый с боков. Задние конечности длиннее передних; между пальцами, по-видимому, была плават. перепонка. Зубы многочисленные, игольчатые. Питались рыбой и мелкими мягкотелыми беспозвоночными. Ископаемые остатки известны из Юж. Африки и Юж. Америки. Лит.: Основы палеонтологии. Земноводные, пресмыкающиеся и птицы, М., 1964.

МЕЗОЗОИ (Mesozoa), класс животных подтипа плоских червей; ранее считались промежуточной группой между простейшими и многоклеточными. 2 подкласса: дициемиды (Dicyemida) и ортонектиды (Orthonectida). Тело длиной до 5 мм, состоит из осевой клетки и имеет червеобразную форму (у дициемид) или - из скопления клеток, покрытых мерцат. эпителием (у ортонектид). М.- эндопаразиты мор. беспозвоночных. Ортонектиды живут в паренхиме турбеллярий, не-мертин и в полости тела, половых железах кольчатых червей, офиур, пластинчатожаберных моллюсков; дициемиды - в почках головоногих моллюсков. Жизненный цикл у М. сложный. Ортонектиды чаще раздельнополы. Развитие - со сменой бесполого и полового размножения (см. рис.). У дициемид в почках головоногих моллюсков партеногенетические поколения (нематогены) чередуются с одним гермафродитным (инфузориген). Из зигот развиваются инфузориформы (стадия распространения), к-рые выхо в воду. Ортонектид 14 видов, относящий ся к 3 родам (из 2 семейств); в СССР 7 видов (из 1 рода), обитают в Барев вом м. Дициемид-45 видов, принадле; щих к 6 родам (из 2 семейств); в СССР 12 видов (из 3 родов), обитают в да невост. морях.

Схема жизненного цикла Rhopalura ophi-осоrоае. А - самцы и самки, выходящие из офиуры Amphiura squa-mata; Б - оплодотворение самки самцом, В1 - самка, наполненная личинками (б1 - б3 - редукционное деление и дробление яйца внутри самки; б4 - мерцательная личинка); В - выхождение сформировавшихся личинок из самки; Г - проникновение личинок в половые щели (я) офиуры; Д - разрез через половую щель, в к-рую проникли личинки (л) паразита; Е - Е1 - личинки, проникшие в эпителий половых сумок офиуры; Ж - зачаточные плазмодии в эпителии половых щелей; 3 - то же в перитонеальном эпителии хозяина; И - молодой плазмодий; К - молодой плазмодий с мору-ламя (м), зародышевыми клеткамии соматическими ядрами (с), вокруг плазмодия видны ядра тканей хозяина; Л и Л1-созревшие мужские и женские плазмодии с самцами ) и самками.

Лит.: Руководство по зоологии, т. М.- Л., 1937; Б о го л еп о в а И. И., С ременная система дициемид, "Параэитол( ческий сборник", 1963, т. 21.

И. И. Боголет

МЕЗОЗОЙСКАЯ ГРУППА (ЭРА) мезо... и греч. zoe - жизнь), предпоследняя группа систем стратиграфич. шкалы и соответствующая ей эра геол. истории Земли. Охватывает интервал времени примерно от 230 до 67 млн. лет назад. Длительность М. э. ок. 163 млн. лет. М. э. впервые была выделена в 1841 англ, геологом Дж. Филлипсом. Подразделяется на 3 системы (периода): триасовую систему (период), юрскую систему (период) и меловую систему (период). М. э. является временем формирования осн. контуров совр. материков и, вероятно, большинства впадин океанов (кроме Тихого, к-рый, вполне возможно, существовал раньше). Характеризуется растительностью, состоящей в основном из папоротников и голосеменных, и фауной с преобладанием рептилий среди позвоночных; в то же время является эрой возникновения покрытосеменных растений, млекопитающих и птиц.

Общая характеристика.

В конце палеозойской эры все древние платформы были приподняты над уровнем моря и опоясаны складчатыми горными системами, образовавшимися в результате герцинской складчатости. Восточно-Европейская и Сибирская платформы соединялись вновь возникшими горными системами Урала, Казахстана, Тянь-Шаня, Алтая и Монголии; сильно увеличилась площадь суши за счёт формирования горных областей в Зап. Европе, а также по краям древних платформ Австралии, Сев. Америки, Юж. Америки (Анды). В Юж. полушарии существовал огромный по площади древний материк Гондвана.

Т. о., в конце палеозойской эры материковые блоки земной коры занимали огромные пространства. С наступлением мезозоя началось их опускание, сопровождавшееся трансгрессиями моря. Материк Гондвана раскололся и распался на обособленные материки: Африку, Юж. Америку, Австралию, Антарктиду и массив Индостанского п-ова. Начиная с юрского периода мор. воды затопили огромные площади древних платформ (Восточно-Европейской, Индостанской, Южно-Американской) и только что закончившие формирование складчатые области, превратившиеся в фундамент молодых платформ (Западно-Сибирской, Скифской, Туранской и др.). В пределах Юж. Европы и Юго-Зап. Азии начали формироваться глубокие прогибы -геосинклинали Альпийской складчатой области. Такие же прогибы, но на океа-нич. земной коре возникали по периферии Тихого ок. Трансгрессия моря, расширение и углубление геосинклинальных прогибов продолжались в течение мелового периода. Только в самом конце мела начинается поднятие материков и сокращение площади морей.
Для мор. отложений триаса и юры характерны толщи чёрных глин и глинистых сланцев с прослоями песчаников, иногда очень мощные. Вокруг Средиземного и Чёрного морей типичны верхнеюрские толщи известняков с коралловыми постройками и рифами (Португалия, Альпы, Крым, Кавказ и др.). В начале мела накапливались песчано-глинистые, местами красноцветные лагунные отложения. Для верх, мела характерно широкое распространение песчано-глау-конитовых отложений и карбонатных пород (известняков), особенно фации писчего мела. Породы меловой системы образуют на земной поверхности три обширные зоны. Между 30° сев. и 30° юж. широты распространены карбонатные отложения, местами красноцветные, связанные с зоной тропич. климата. К С. и к Ю. от неё, до Сев. и Юж. Полярного кругов распространены песчано-глаукони-товые отложения, часто с фосфоритами, связанные с зоной умеренного климата. Климатич. зональность, следовательно, в меловом периоде была близкой к совр., но с более широкими зонами тропиков и умеренного климата. По-видимому, для юры и триаса была характерна большая ширина зон влажных тропиков.

Органический мир. Преимущественно аридные условия перми и начала триаса сменились в мезозое всё более увеличивающейся влажностью климата. Обильная растительность каменноугольного периода с расцветом древовидных плауновых (лепидодендроны, сигиллярии), гигантских каламитов, кор-даитов и др. групп растений вымерла в эпоху засушливых условий перми. В М. э. происходит обновление флоры и широкое развитие растительного покрова на больших площадях материков. В триасе на материках ещё господствовали обширные аридные климатич. зоны с бедной растительностью, в к-рых в условиях равнин и озёрных водоёмов отлагались красноцветные песчано-глинистые породы с гипсом. В умеренных климатич. поясах значит, площади были покрыты лесами из хвойных (Voltzia и др.), хвощовых, папоротников, древовидных плауновых (Pleuromeia), потомков кордаитов - юкки (Vuceites). В заболоченных пространствах лесов образовались торфяные залежи, из к-рых затем возникли слои ископаемого угля и угленосные толщи (в СССР - на Урале, в Забайкалье; за рубежом - в Корее, Японии, Индии, Юж. Африке, Австралии). На Южно-Американской платформе (басе. р. Парана) и в Тунгусской впадине Сибирской платформы в триасе происходило накопление мощных туфовых и лавовых толщ, связанных с многочисл. вулканами. В юрском периоде морем были захвачены обширные пространства Европы, Зап. и Вост. Сибири, Сев. Африки и вост. побережья Тихого ок. В пределах материков образовались значит, равнинные пространства, орошаемые реками, покрытые в условиях умеренного и тропич. влажного климата пышным растит, покровом и занятые обширными озёрами и болотами. В них происходило накопление торфа, к-рый преобразовался затем в пласты ископаемого угля. В составе растит, покрова тропич. и субтропич. поясов наибольшее распространение имели голосеменные растения - хвойные, гинкговые, беннет-титовые и саговниковые (цикадовые). Среди споровых растений преобладали папоротники. Хвощовые и плауновые стали играть подчинённую роль. В сев. умеренном поясе доминировали хвойные, гинкговые и чекановскиевые леса. В триасе закончился век гигантских амфибий - стегоцефалов и уже к концу триаса преобладающую роль в фауне позвоночных получили рептилии. Гигантские рептилии достигли особенного развития в юрском и меловом периодах. Они приобрели значит, разнообразие и разделились на водных ящеров (плезиозавры и ихтиозавры), наземных ящеров - динозавров (игуанодонты, трахидонты, стегозавры и др.) и летающих ящеров (птерозавры). Особенно благоприятной средой для их развития были обширные тропич. леса и озёрно-болотные впадины, в к-рых они питались водяными растениями. В юре появились мелкие млекопитающие и первые зубастые птицы -археоптериксы.

В середине мелового периода произошло сильное изменение в составе растительности. Покрытосеменные растения, первые представители к-рых появились в начале мела, к середине мела заняли господств, положение, к-рое они сохраняют до наст, времени. Влаголюбивая юрско-раннемеловая растительность постепенно заняла подчинённую роль, хотя реликты этой флоры существуют до сих пор в нек-рых тропич. и субтропич. областях (напр., в Н. Зеландии). В составе меловой флоры покрытосеменных преобладали платаны, лавры, фикусы, магнолиевые, бобовые и др. Среди хвойных были распространены сосновые, тиссо-вые, секвой, таксодиум и др. Беннеттиты к концу мела вымерли, из гинкговых остался один вид. Папоротники и саговниковые стали играть подчинённую роль. В тропич. и умеренных поясах произрастали обширные леса и продолжалось накопление торфяных залежей, давших начало угольным пластам. Развитие покрытосеменных в середине мелового периода содействовало распространению насекомых (опылителей), а это, в свою очередь, привело к широкому развитию класса птиц, а затем и млекопитающих, к-рые вытеснили пресмыкающихся. В конце М. э. крупные рептилии (динозавры) вымерли.

В течение М. э. значительно изменился также состав флоры и фауны морей. Палеозойские роды и виды полностью исчезли в начале триаса и заменились новыми. Получили развитие пластинчатожаберные и брюхоногие моллюски, а пле-ченогие, преобладавшие в палеозое, отошли на второй план. Из головоногих достигли расцвета аммониты и белемниты, из иглокожих - мор. ежи и мор. лилии. Среди рыб развились и приобрели господств, положение костистые рыбы. В конце М. э. вымерли гигантские мор. рептилии (ихтиозавры), из беспозвоночных - аммониты, белемниты и др.

Полезные ископаемые. К отложениям М. г., помимо залежей бурых и кам. углей (Азиат, часть СССР, Китай, США), приурочены месторождения нефти, осадочных жел. руд (СССР, Франция), бокситов (СССР, Франция, Венгрия, Румыния и др.), залежи фосфоритов и кам. соли (СССР). С интрузивными породами складчатых областей Тихоокеанского пояса связаны рудные месторождения золота (Аляска, Калифорния, Верхоянье), серебра, меди, свинца, цинка, олова.

Лит.: Страхов Н. М., Основы исторической геологии, 3 изд., ч. 1 - 2, М.- Л., 1948; Жинью М., Стратиграфическая геология, пер. с франц., М., 1952; К р и-штофовичА. Н., Палеоботаника, 4 изд., Л., 1957; Палеозойские и мезозойские флоры Евразии и фитогеография этого времени, М., 1970. М. В. Муратов, В. А. Вахрамеее.

МЕЗОЗОЙСКИЕ ЭПОХИ СКЛАДЧАТОСТИ, эпохи интенсивного проявления складчатости, горообразования и гранитоидного интрузивного магматизма, происходившие в течение мезозойской эры. Наиболее интенсивно проявились по периферии Тихого ок. (в Вост. Азии, в Кордильерах и Андах), где носят назв. Тихоокеанской складчатости.

Начальная тектонич. эпоха мезозойской эры - раннекиммерий-ская (индосинийская) - относится к концу триаса - началу юры; её проявления отмечены в Индокитае, на С.-В. Иранского нагорья, на п-овах Мангышлак и Таймыр, в сев. Добрудже и нек-рых р-нах Кордильер Сев. Америки. Следующая за ранней п о з д н е-киммерийская тектонич. эпоха, известная также под назв. андийской, невадийской, колымской, арауканской, является гл. эпохой формирования структур Вер-хояно-Чукотской обл., Монголо-Охотской складчатой системы, центр, части Кордильер Сев. и Юж. Америки и нек-рых др. областей. Она проявилась в конце юры - начале мела. Новое оживление тектонич. движений приходится на середину и особенно на конец мела - начало палеогена - ларамийская эпоха, когда формировалась структура Скалистых гор, зап. части Корякского нагорья, п-ова Камчатка, Сихотэ-Алиня, о. Суматра и др. Вне геосинклинальных систем мезозойский тектогенез проявился поднятиями окраинных частей платформ (особенно Сибирской и Южно-Китайской), возобновлением магматич. деятельности (кислый вулканизм, интрузии гра-нитоидов на В. Азии). Мезозойский тектогенез сопровождался образованием мно-гочисл. месторождений цветных металлов (меди, молибдена, олова, вольфрама и др.), а также золота (Тихоокеанский пояс, Монголо-Охотская система, активизированные части обрамляющих платформ и отчасти Средиземноморский пояс). Нек-рые исследователи объединяют М. э. с. и собственно альпийскую эпоху складчатости в один альпийский цикл тектогенеза. (Карту см. на стр. 7.)

Лит.: Тектоника Евразии, под ред. А. Л. Яншина, М., 1966; Кордильеры Америки, пер. с англ., М., 1967; Кинг Ф., Вопросы тектоники Северной Америки, пер. с англ., М., 1969; X а и н В. Е., Региональная геотектоника, М., 1971. В. Е. Хаин

МЕЗОКАРПИЙ (от мезо... и греч. kar-pos - плод), межплодник, промежуточный слой околоплодника у растений.

МЕЗОКЕФАЛИЯ (от мезо... и греч. kephale - голова), среднегодовое т ь, форма головы человека, характеризующаяся ср. величинами головного указателя (от 76,0 до 80,9).

МЕЗОКЛИМAT (от мезо... и климат), то же, что местный климат.

МЕЗОЛИТ (от мезо... и греч. li'thos -камень), эпоха каменного века, переходная между палеолитом и неолитом. Переход от палеолита к М. в основном совпал со сменой плейстоцена голоценом, характеризующимся совр. климатом, растительностью и животным миром. Дата М. Европы (установлена радиоуглеродным методом) -10-7 тыс. лет назад (в сев. р-нах он продолжался до 6-5 тыс. лет назад), М. Бл. Востока -12-9 тыс. лет назад. Для мезолитич. культур мн. территорий характерны миниатюрные кам. орудия - микролиты. Употреблялись оббитые рубящие орудия из камня - топоры, тёсла, кирки, а также орудия из кости и рога - наконечники копий, гарпуны, рыболовные крючки, острия, кирки и др. Распространились лук и стрелы, разнообразные приспособления для рыболовства и охоты на мор. зверя (долблёные челны, сети). Глиняная посуда появилась в основном уже при переходе от М. к неолиту. Собака, к-рая, ввероятно, была приручена в позднем палеолите, широко использовалась в М.; началось приручение и нек-рых др. видов животных (свинья и др.). Основой х-ва были охота, рыболовство и собирательство (в т. ч. сбор съедобных моллюсков). Отдельные мезолитические племена (напр., племена натуфийской культуры в Палестине, 10-8 тыс. до н. э.) делали попытки искусств, выращивания злаков. Т.о., возникали предпосылки для перехода (уже на ступени неолита) к производящим формам х-ва - земледелию и скотоводству. Значит, часть мезолитич. стоянок, состоявших из неск. временных жилищ, расположена на -дюнах и торфяниках. Многие стоянки представляют собой скопления раковин моллюсков (т. н. кухонные кучи), пещерные стойбища редки. Близ нек-рых мезолитич. поселений открыты родовые кладбища. Мезолитич. культуры многочисленны и разнообразны: азильская культура и тарденуазская культура в Зап. Европе; маглемозе и эртебёлле на С. Европы, се-бильская культура в долине Нила, капсийская культура на С. Африки, вилъ-тон на Ю. Африки; хоабинъская культура в Юго-Вост. Азии и мн. др. Нек-рые археологи не употребляют термин "М." и относят раннемезолитич. памятники к эпипалеолиту, а поз днем езолитиче-ские - к протонеолиту или т. н. докера-мич. неолиту.

Лит.: У истоков древних культур (Эпоха мезолита), М.- Л., 1966 (Материалы и исследования по археологии СССР, № 126); Б а д е р Н. О., Мезолит, в кн.: Каменный век на территории СССР, М., 1970; Clark G., World prehistory, 2 ed., Camb., 1969; La prehistoire, P., 1966 (Nouvelle Clio. L'histoire et ses problemes, № 1).

П. И. Борисковский.

МЕЗОМЕРИЯ (отмезо ... и греч. meros-часть), сопряжение, резонансе сопряжённых системах, характер распределения электронной плотности в молекулах, к-рый можно трактовать как частичную делокализацию связей и зарядов атомов. Так, в карбоксилат-анио-не, согласно классич. структуре, один из атомов кислорода связан с атомом углерода простой связью и несёт полный отрицат. заряд, другой соединён двойной связью и нейтрален. Такая структура может быть выражена двумя равноценными формулами I и II (см. ниже). Опыт же показывает, что оба атома кислорода равноценны, т. е. каждый из них несёт один и тот же частичный отрицат. заряд,

а обе связи с атомом С имеют одинаковую длину. Т. о., истинная структура является промежуточной между I и II; она может быть изображена как резонансный гибрид канонич. (крайних) структур I и II (см. Резонанса теория) или мезомерной формулой III, в к-рой изогнутые стрелки показывают направление смещения электронов, приводящего к выравниванию зарядов и связей:

[1601-1.jpg]

М. ярко проявляется в сопряжённых системах (см. Сопряжение связей). Обычно она выражает состояние, промежуточное между классич. структурой и структурой (или структурами) с полностью разделёнными зарядами, напр.:
[1601-2.jpg]


В циклич. сопряжённых системах мезомерное смещение не всегда приводит к разделению зарядов. Так, строение бензола может быть представлено как резонансный гибрид двух классич. структур Кекуле (IV и V) или же мезомерной формулой VI, отражающей равноценность всех шести атомов углерода и всех связей между ними:


[1601-3.jpg]


Мезомерный эффект с небольшим ослабеванием передаётся по системе сопряжённых связей (поэтому он наз. также эффектом сопряжения). Группы, несущие неподелённую электронную пару (R2N-, RO-, НО-, галогены), обладают положит, мезомерным эффектом (+ М-эффект) и могут увеличивать электронную плотность остальной части систе-


[1601-4.jpg]

Представление о М. позволяет объяснить многие свойства веществ и механизмы реакций в органич. химии. Количеств, картина распределения электронной плотности в молекулах может быть получена путём квантово-механич. расчётов (см. Квантовая химия).
Концепция М. разработана главным образом английским химиком К. Инголдом в 1926.

Лит.: Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1, М., 1969. Б.Л.Дяткин.





1512.htm
МАГНЕТРОН [от греч. magnetis - магнит и (элек)трон], в первоначальном и широком смысле слова - коаксиальный цилиндрич. диод в магнитном поле, направленном по его оси; в электронной технике - генераторный электровакуумный прибор СВЧ, в к-ром взаимодействие электронов с электрич. составляющей поля СВЧ происходит в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрич. полю.

Термин "М." был введён амер. физиком А. Халлом (A. Hull), к-рый в 1921 впервые опубликовал результаты теоретических и экспериментальных исследований работы М. в статич. режиме и предложил ряд конструкций М. Генерирование электромагнитных колебаний в дециметровом диапазоне волн (на волнах Л = 29 см) посредством М. открыл и запатентовал в 1924 чехословацкий физик А. Жачек. В 20-е гг. влияние магнитного поля на генерирование колебаний СВЧ исследовали физики: Е. Ха-бан (1924, Германия), А. А. Слуцкин и Д. С. Штейнберг (1926-29, СССР), К. Окабе и X. Яги (1928-29, Япония), И. Ранци (1929, Италия). В 30-е гг. исследования М. как генератора СВЧ велись во мн. странах. Осн. задача этого периода - увеличение выходной мощности генерируемых колебаний - была решена в 1936-37 сов. инженерами Н. Ф. Алексеевым и Д. Е. Маляровым под руководством М. А. Бонч-Бруевича. Они увеличили мощность М. на 2 порядка (до 300 вт на волне 9 см), применив в качестве анода массивный медный блок, содержащий ряд резонаторов. М. такой конструкции называют многорезонаторным. Эта конструкция М. оказалась настолько совершенной, что в последующие годы во всём мире разрабатывались и выпускались только многорезонаторные М. В М. применяют катод, имеющий форму полого цилиндра, внутри к-рого располагается подогреватель. Катод такой формы впервые был предложен для радиоламп сов. академиком А. А. Чернышёвым в 1918. В 30-е гг. мн. инженеры предлагали для М. катоды в форме полого цилиндра, напр. амер. инж. К. Хенсел в 1933 (для М., у к-рого катод окружает анод), амер. инж. Л. Молтер, Дж. Райхман, Р. Гудрич в 1936 (для использования вторичной эмиссии катода в М.), советский инженер В.П. Илясов в 1939 (для многорезонаторного М.).

В 40-70-е гг. в многорезонаторный М. инженерами мн. стран (СССР, Великобритании, США, Японии и др.) был внесён ряд улучшений, были разработаны более тысячи типов многорезонаторных М., в основном для радиолокации. С кон. 60-х гг. резко увеличился выпуск М. непрерывного генерирования колебаний на волне ~ 12 см для нагрева полями СВЧ в печах бытового назначения (мощностью 0,5-3 квт) и пром. установках (мощностью 5-100 квт). В 1950- 1970-е гг. на основе многорезонаторного М. был создан ряд приборов для генерации и усиления колебаний СВЧ (см. Магнетронного типа приборы).

Распространение М. вызвано высоким кпд (до 80% ), компактностью конструкции и стабильностью работы при сравнительно невысоких анодных напряжениях. В нач. 70-х гг. промышленно развитыми странами выпускаются М. для работы на различных частотах от 0,5 до 100 Ггц, с мощностями от неск. вт до десятков квт в непрерывном режиме генерирования колебаний и от 10 вт до 5 Мет в импульсном режиме при длительностях импульсов гл. обр. от долей до десятков мксек. М. выпускаются как неперестраиваемые (фиксированная частота), так и перестраиваемые в небольшом диапазоне частот (обычно менее 10%). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в сек) - ротационные и вибрационные механизмы.

В простейшей конструкции многорезонаторного М. (рис. 1) анодный блок представляет собой массивный медный цилиндр с центр, круглым сквозным отверстием и симметрично расположенными сквозными полостями (от 8 до 40), выполняющими роль объёмных резонаторов. Каждый резонатор соединяется щелью с центр, отверстием, в к-ром расположен катод. Резонаторы образуют кольцевую колебательную систему. Такая система имеет не одну, а неск. резонансных частот, при к-рых на кольцевой колебат. системе укладывается целое число стоячих волн от 1 до N/2 (N - число резонаторов). Наиболее выгодным является вид колебаний, при к-ром число полуволн равно числу резонаторов (т. н. я-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на я. Для стабильной работы М. (во избежание перескоков во время работы на др. виды колебаний, сопровождающихся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебат. системы значительно отличалась от рабочей частоты (примерно на 10% ). Т. к. в М. с одинаковыми резонаторами разность этих частот получается недостаточной (рис. 2, в), её увеличивают либо введением связок в виде металлич. колец, одно из к-рых соединяет все чётные, а другое все нечётные ламели анодного блока (рис., 2, б), либо применением разнорезонаторной колебат. системы (чётные резонаторы имеют один размер, нечётные - другой) (рис. 2, в).

Рис. 1. Многорезонаторный магнетрон простейшей конструкции (слева - внешний вид; справа - разрез): 1 - анодный блок с 8 резонаторами типа ель-отверстие; 2 - резонатор; 3 - ламель анодного блока; 4 - связка в виде металлического кольца (второе такое же кольцо расположено на другом торце анодного блока); 5 - катод; 6 - выводы подогревателя катода; 7 - радиатор; 8 - петля связи для вывода энергии СВЧ; 9 - стержень вывода энергии СВЧ для присоединения к коаксиальной линии.

Рис. 2. Виды резонаторных систем магнетрона (а - равнорезонаторная без связок, б - равнорезонаторная со связками, в- разнорезонаторная)и графики разделения их резонансных частот =(fПи-fn)/fПи, где fПи- частота колебаний, соответствующая я-виду колебаний. fn - частота колебаний, соответствующая я-му номеру колебаний. В 18-резонаторном магнетроне 9-й вид колебаний является л-видом.

В многорезонаторном М. на электроны, движущиеся в пространстве между катодом и анодным блоком, действуют 3 поля: постоянное электрич. поле, постоянное магнитное поле и электрич. поле СВЧ (резонаторной системы). При перемещении электронов в радиальном направлении (от катода к аноду) энергия источника анодного напряжения преобразуется в кинетич. энергию электронов. Под влиянием постоянного магнитного поля, направленного по оси катода (перпендикулярно постоянному электрич. полю), электроны изменяют направление движения: их радиальная скорость переходит в тангенциальную, перпендикулярную радиальной, Т. к. часть электрич. поля СВЧ через щели резонаторов проникает в пространство анод - катод, то электроны при движении в тангенциальном направлении тормозятся тангенциальной составляющей электрич. поля СВЧ, и поэтому их энергия, полученная от источника постоянного напряжения, преобразуется в энергию колебаний СВЧ. Поле СВЧ дважды за период колебаний меняет направление. Для непрерывного торможения электронов необходимо, чтобы они от одного резонатора к соседнему (в тангенциальном направлении) перемещались за полпериода. Такой синхронизм между перемещением электронов и тормозящим электрич. полем СВЧ является осн. принципом работы многорезонаторного М. Электроны, к-рые попадают в ускоряющее поле СВЧ, увеличивают свою кинетич. энергию и выпадают из синхронизма. Они либо возвращаются на катод, либо попадают в тормозящее поле СВЧ и снова входят в синхронизм.

Рис. 3. Типичная рабочая характеристика импульсного магнетрона. Заштрихованными участками обозначены области отсутствия генерации, сплошными линиями - импульсная выходная мощность Ян и напряжённость постоянного магнитного поля Н, пунктирными линиями - кпд (без учёта мощности подогрева катода).

Типичные характеристики М. приведены на рис. 3. М. начинает работать, когда анодное напряжение достигает значения, соответствующего началу синхронизма. С увеличением напряжения условия синхронизма улучшаются; сила тока, выходная мощность и кпд М. увеличиваются При оптимальных условиях синхронизма кпд М. достигает максимума. Дальнейшее повышение анодного напряжения постепенно ухудшает синхронизм и сопровождается снижением кпд, несмотря на увеличение силы тока и выходной мощности.

Лит.: Алексеев Н. Ф., Маляров Д. Е., Получение мощных колебаний магнетроном в сантиметровом диапазоне волн, "Журнал технической физики", 1940, т. 10, в. 15, с. 1297 - 1300; Фиск Д., X а г-струм Г., Гатман П., Магнетроны, пер. с англ., М., 1948; Бычков С. И., Магнетронные генераторы, Л., 1948; Магнетроны сантиметрового диапазона, пер. с англ., под ред. С. А Зусмановского, ч. 1 - 2, М., 1950-51; Коваленко В. Ф., Введение в электронику сверхвысоких частот, 2 изд., М., 1955; Самсонов Д. Е., Основы расчёта и конструирования многоре-зонаторных магнетронов, М., 1966. S. Ф. Коваленко.

МАГНЕТРОН КОАКСИАЛЬНЫЙ, магнетрон с коаксиальным резонатором, магнетрон, в к-ром вокруг анодного блока расположен коаксиальный резонатор, соединённый щелями с резонаторами анодного блока. Щели, соединяющие коаксиальный резонатор с анодным блоком, прорезаются параллельно оси магнетрона в задних стенках не всех резонаторов, а через один (рис.). М. к. применяются в наземных и бортовых радиолокац. станциях различного назначения. М. к. выпускаются для работы только в импульсном режиме как с механизмами медленной и быстрой перестройки частоты, так и на фиксированных частотах от 2 до 70 Ггц с выходными мощностями от 1 квт до 2 Мет (в импульсе). М. к. был предложен франц, инж. И. Азема в 1950 и более совершенной конструкции - амер. учёными Р. Колье и И. Фейнштейном в 1955.

Схема коаксиального магнетрона: а - вид системы резонаторов; б - вид в поперечном сечении; 1 - резонаторы анодного блока; 2- коаксиальный резонатор; 3- щели, соединяющие резонаторы анодного блока с коаксиальным резонатором; 4 - поршень коаксиального резонатора для перестройки частоты; 5 - окно для вывода мощности колебаний СВЧ; 6 - катод; 7 - полюсные наконечники магнита.

Коаксиальный резонатор в М. к.: а) повышает стабильность его работы (у М. к. уход частоты, вызванный отражением волн от нагрузки, ширина спектра частот и интенсивность боковых лепестков спектра примерно в 5 раз меньше, а уход частоты от изменения силы тока и пропуск импульсов примерно в 10 раз меньше, чем у обычного магнетрона); б) разделяет частоты равнорезонаторного анодного блока настолько, что отпадает необходимость применения связок; в) позволяет увеличить рабочую поверхность катода и анодного блока и за счёт этого снизить плотность электронного потока, увеличить долговечность М. к. в 3- 4 раза по сравнению с обычным магнетроном; г) обеспечивает механич. перестройку частоты на 6-13% перемещением поршня в коаксиальном резонаторе без существенного изменения выходной мощности.

Лит.: Электронные сверхвысокочастотные приборы со скрещенными полями, пер. с англ., под ред. М. М. Федорова, т. 2, М., 1961, с. 119 - 29. В. Ф. Коваленко.

МАГНЕТРОН, НАСТРАИВАЕМЫЙ НАПРЯЖЕНИЕМ, генераторный прибор магнетронного типа, рабочая частота к-рого в широком диапазоне изменяется пропорционально анодному напряжению. Его иногда называют митроном. Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 амер. инженеры Д. Уилбур и Ф. Питере. Ими же в 1950 был предложен М., н. н., с центр, катодом и в 1955 - с вынесенной в торец электронной пушкой. М., н. н., выходной мощностью до 1 вт широко применяются в измерит, радиоаппаратуре, в гетеродинах широкополосных радиоприёмников с быстрой перестройкой частоты и в качестве задающих генераторов в радиолокац. станциях, 1 - 10 вт - в радиовысотомерах, телемет-рич. аппаратуре и др. устройствах, где требуется режим частотной модуляции в широкой полосе генерируемых частот, св. 10 вт - в широкополосных радиопередатчиках, телевизионных и телеметрия, устройствах бортовых систем и др. В 50-60-х гг. 20 в. было выпущено много типов М., н. н., работающих на частотах 0,2-10 Ггц. М., н. н., с выходной мощностью до 1 era (включительно) имеют диапазон перестройки частоты примерно 1-1,5 октавы, 1-10 вт - до 50% от средней частоты, 10-500 вт - до 10-20%. Кпд маломощных М., н. н., как правило, не превышает 10%, а наиболее мощных достигает 70%.

От обычного многорезонаторного магнетрона М., н. н,, отличается пониженной добротностью колебательной системы и уменьшенной силой электронного тока в пространстве взаимодействия. Колебат. система М., н. н. (рис.), представляет собой цилиндрич. анод, выполненный в виде встречных штырей, встроенных в объёмный резонатор, или отрезок линии, напр, отрезок радиоволновода, полосковой линии и др. Уменьшение силы тока в пространстве взаимодействия М., н н., достигается либо путём недо-грева катода (ограничение эмиссии электронов темп-рой), либо применением торцевой электронной пушки и заменой центр, эмитирующего катода неэмитирующим электродом. Распространён второй способ, т. к, он позволяет посредством управляющего электрода изменять силу тока и, следовательно, мощность М., н. н. Так же, как и в многорезонаторном магнетроне, при генерировании колебаний электронные сгустки движутся с такой тангенциальной скоростью, что за один полупериод колебаний перемещаются на расстояние, равное шагу анодной штыревой системы. Это условие синхронизма выражается следующей линейной зависимостью между анодным напряжением Ua (в) и рабочей частотой

Схематическое изображение магнетрона, настраиваемого напряжением: 1 - анод в виде системы встречных штырей; 2 - неэмнтирующий __ электрод; 3 - катод; 4 - управляющий электрод; 5 - керамические цилиндры вакуумплотной оболочки; 6 - низко добротный объёмный резонатор; 7 - экранирующий магнитопроводящий кожух; 8 - постоянный магнит; 9 - коаксиальный вывод энергии; 10 - элемент связи вывода энергии с объёмным резонатором; Супр- источник управляющего напряжения; Ua - источник анодного напряжения..

[1512-1.jpg]

где В - индукция магнитного поля (гс); N - число штырей; rа и rk - соответственно радиусы анода и центрального неэмитирующего электрода (см).

Лит.: Стальмахов В. С., Основы электроники сверхвысокочастотных приборов со скрещенными полями, М., 1963, с. 254-77; Дятлов Ю. В., Козлов Л. Н., Митроны, М., 1967. И. В. Соколов.

МАГНЕТРОННОГО ТИПА ПРИБОРЫ, класс электровакуумных приборов СВЧ (300 Мгц - 300 Ггц), в к-рых движение электронов происходит в скрещенных постоянных электрич. и магнитном полях и электромагнитном поле СВЧ. М. т. п. используются для генерирования и усиления колебаний в радиолокац. и навигац. устройствах, устройствах космич. связи, линейных ускорителях, мед. аппаратах, установках нагрева токами СВЧ и т. д. В М. т. п. постоянное электрическое поле создаётся в промежутке анод - катод (т. н. пространство взаимодействия), а постоянное магнитное поле - перпендикулярно силовым линиям постоянного электрич. поля и направлению движения электронов (в М. т. п. цилиндрич. конструкции - вдоль оси катода). Условия обратной связи между электромагнитным полем и электронным потоком, необходимые для самовозбуждения колебаний в М. т. п., легко выполняются. Благодаря обратной связи электроны, к-рые в результате взаимодействия с электромагнитным полем отдают ему часть своей энергии, приобретённой от источника постоянного напряжения, смещаются к аноду и в итоге попадают на него, а те электроны, к-рые отбирают от электромагнитного поля часть энергии, возвращаются на катод, бомбардируя, его. Явление электронной бомбардировки используется в нек-рых мощных М. т. п. для поддержания необходимой темп-ры катода. Для осуществления эффективного и длительного взаимодействия электронов с электромагнитным полем должна соблюдаться синхронность их движения, т. е. равенство скорости переносного движения электронов veс фазовой скоростью бегущей волны поля.

М. т. п. обладают свойством многофункциональности, т. е. эффективно работают в разных электрич. режимах и условиях эксплуатации, и высоким кпд (до 90% ); способны генерировать и усиливать колебания в весьма широкой области электромагнитных волн (от метровых до миллиметровых волн), генерировать колебания большой мощности (до неск. сотен квт непрерывной и до неск. десятков Мвт импульсной мощности) при относительно низких анодных напряжениях (до 50 же), перестраиваться по частоте в широком диапазоне (до 20% механическим и до 100% электрич. способами), усиливать колебания в широкой полосе частот (до 20% и более) при достаточно больших коэфф. усиления (до 20 дб и более).

Прототипом всех М.т.п. является многорезонаторный магнетрон - наиболее известный прибор этого класса (см. рис.).

Упрощённое изображение пространства взаимодействия магнетрона: а - распределение высокочастотного электрического поля при колебаниях л-вида; б - форма электронного облака при колебаниях я-вида. 1 - замедляющая система (анод); 2 - катод; 3 - граница электронного облака; 4 - форма траекторий электронов; Е - силовые линии постоянного электрического поля; Е - силовые линии электрического поля СВЧ; В - силовые линии индукции магнитного поля; vе - скорость переносного движения электронов.

На магнетронном принципе взаимодействия электронного потока с электромагнитным полем создано множество разновидностей приборов (генераторов и усилителей), различающихся конструктивным исполнением замедляющих систем и устройств формирования электронного потока. В соответствии с этими признаками различают 3 семейства М. т. п.:

1) с замкнутыми В кольцо замедляющей системой и электронным потоком (с катодом в пространстве взаимодействия);

2) с электрически разомкнутой замедляющей системой и замкнутым в кольцо электронным потоком (с катодом в пространстве взаимодействия); 3) с замкнутыми или разомкнутыми замедляющими системами и инжектированным электронным потоком (с катодом, вынесенным из пространства взаимодействия).

К первому семейству приборов гл. обр. относятся: многорезонаторный магнетрон, или магнетрон бегущей волны, в к-ром замедляющая система обладает ярко выраженными резонансными свойствами, т. е. колебания возбуждаются на дискретных частотах, рабочим видом колебаний является т. н. л-вид или я/2-вид, возможна перестройка частоты колебаний механическим или электрическим способом в небольших пределах (3-10% ); коаксиальный магнетрон (разновидность многорезонаторного магнетрона) с перестройкой частоты (до 20% ) и стабилизацией её посредством внеш. или внутр. высокодобротного объёмного резонатора, аксиального с резонаторной системой магнетрона и возбуждаемого на волне типа Нои; регенеративно-усилительный магнетрон, в к-ром возбуждение колебаний л-вида и управление их частотой осуществляется внеш. сигналом малой мощности, вводимым обычно через цнркулятор в сильно нагруженную резонаторную систему; магнетрон, настраиваемый напряжением (митрон), в к-ром сильно нагруженная колебат. система (обычно стержневого типа) обладает слабо выраженными резонансными свойствами и ток эмиссии катода ограничен, вследствие чего на малых уровнях мощности достигается перестройка частоты напряжением в широком диапазоне (до одной октавы и более).

Ко второму семейству приборов гл. обр. относятся: кар матрон - генератор обратной волны, в к-ром обычно используется замедляющая система стержневого типа (чаще типа -"встречные штыри") с поглотителем энергии внутри и частота колебаний перестраивается напряжением; амплитрон - мощный усилитель обратной волны с согласованными входным и выходным устройствами и полосой усиливаемых частот до 10% от средней частоты (при отражениях энергии СВЧ на входе и выходе и температурном ограничении тока эмиссии амплитрон может работать как автогенератор с перестройкой частоты); стабилотрон- высокостабильный генератор с механич. перестройкой частоты, состоящий из амплитрона, делителя мощности отражающего типа, фазовращателя и высокодобротного стабилизирующего резонатора (в литературе часто встречается термин платинотрон как обобщённое название для амплитрона и стабилотрона); у л ь т р о н - усилитель прямой волны с более широкой полосой усиливаемых частот (до 20% ) и более высоким коэфф. усиления (до 30 дб), чем у амплитрона.

К третьему семейству приборов гл. обр. относятся: лампа обратной волны магнетронного типа (ЛОВМ) с перестройкой частоты генерируемых колебаний напряжением в широком диапазоне (до 20%); лампа бегущей волны магнетронного типа (ЛБВМ) с широкой полосой усиливаемых частот (до 20% ) и высоким коэфф. усиления (до 20 дб).

Лит.: Электронные сверхвысокочастотные приборы со скрещенными полями, пер. с англ., т. 1 - 2, М.. 1961: Лебедев И. В., Техника и приборы сверхвысоких частот, т. 2, М.- Л., 1972; ГОСТ 17104-71. Приборы магнетронного типа. Термины и определения, M.i 1971. Д. Е. Самсонов.

МАГНЕТРОННЫЙ МАНОМЕТР, вакуумметр, по своему устройству напоминающий магнетрон. Существуют ионизационные М. м. (манометр Лафферти) и электроразрядные. Диапазон измерений ионизац. М. м.: 10-5 - 10-11 н/м2 (10-7 - 10-13 мм 'рт. ст.), электроразрядного - 10-2 - 10-9 н/м2 (10-4 - 10-11 мм рт. ст.). См. Вакуумметрия.

МАГНИЕВЫЕ РУДЫ, природные минеральные образования, содержание магния в к-рых достаточно для экономически выгодного его извлечения. Этот элемент входит в состав более ста минералов, в т. ч.: брусита Mg(OH)2 с содержанием Mg 41,7% ; магнезита MgCCb (28,8% Mg); доломита MgCО3 х СaCО3, (18,2% Mg); кизерита MgSO4 х H2O (17,6% Mg); бишофита MgCl2-6H2О (12,0% Mg); лангбейнитa 2MgSО4 х K2SO4 (11,7% Mg); эпсомита MgSO4 х 7H2O (9,9% Mg); каинита MgS4 х KCl х 3H2O (9,8% Mg); карналлита MgCl2 х KCl х 6H2O (8,8% Mg); астраханита MgSO4 х Na2SO4 х 4H2O (7,3% Mg); полигалита MgSO4 х 2CaSO4 х K2SO4 х 2H2O (4,2% Mg).

Главнейшими М. р. являются месторождения ископаемых магнезиально-калийных солей. Крупные месторождения магнезита встречаются в метаморфизованных доломитах. При контактном метаморфизме магнезита возникают скопления брусита - наиболее высокомагнезиального сырья. В результате выщелачивания магнезиальных солей подземными водами образуются ископаемые природные рассолы и соляные источники. Совр. соляные месторождения (рассолы и осадки) возникают в замкнутых заливах морей (напр., Кара-Богаз-Гол) и в бессточных внутриматериковых впадинах (оз. Баскунчак и Эльтон в СССР, Большое Солёное озеро в США). В качестве источника Mg непрерывно возрастает также роль морской воды (4% Mg в сухом остатке) с её стабильным составом и неограниченными ресурсами. В СССР располагаются крупнейшие бассейны магнезиально-калийных солей - Верхнекамский (пермского возраста) в Предуралье, Припятский (девонский) в Белоруссии, Калушское (неогеновое) месторождение в Предкарпатье и др. За рубежом особенно известны пермские Штасфуртский соленосный бассейн (ФРГ и ГДР) и месторождения юга США. См. также Магнии.

Лит.: Курс месторождений неметаллических полезных ископаемых, М., 1969; Требования промышленности к качеству минерального сырья, в. 22 - Кашкаров О. Д., Ф и в е г М. П., Калийные и магнезиальные соли, М., 1963: С м о л и н П. П., Тенденции использования магнезиального сырья, в сб.: Неметаллические полезные ископаемые, М., 1971. П. П. Смолин.

МАГНИЕВЫЕ СПЛАВЫ, сплавы на основе магния. Наиболее прочные, в т. ч. и наиболее жаропрочные, М. с. разработаны на основе систем магний - металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов, пригодных для легирования М. с., сравнительно невелик. М. с. разделяются на 2 осн. группы: литейные - для произ-ва фасонных отливок и деформируемые - для произ-ва полуфабрикатов прессованием, прокаткой, ковкой и штамповкой.

Историческая справка. Первые М. с. появились в нач. 20 в. (под назв. "электрон", теперь мало употребляемым). Значение конструкционных пром. материалов М. с. приобрели в кон. 20-х - нач. 30-х гг. 20 в., т. е. почти через 100 лет после того как франц. химик А. Бюсси впервые выделил магний в чистом виде (1828). До конца 40-х гг. применялись гл. обр. сплавы на основе систем Mg - А1 - Zn и Mg - Mn. Дальнейшему прогрессу в области создания М. с. способствовало открытие модифицирующего и рафинирующего действия циркония. В 50-х гг. начали применяться сплавы на основе систем Mg - Zn - Zr, Mg - p. з. м. (редкоземельный металл) - Zr (или Мn), Mg - Th, а также сверхлёгкие сплавы на основе системы Mg - Li. Произ-во и потребление магния и М. с. возрастает. Мировое произ-во магния к нач. 2-й мировой войны 1939-45 составило ок. 50 тыс. т, в 1969 ~ 2 млн. т, из них ~ 40-50% расходуется на произ-во отливок и деформированных полуфабрикатов.

Химический состав наиболее широко применяемых в СССР М. с. дан в табл. 1. В пром. М. с. содержатся добавки Al, Zn, Mn, Zr и редкоземельных металлов (цериевый мишметалл, La, Nd, Y), Th, Ag, Cd, Li, Be и др. Общее количество добавок в наиболее легированных М. с. достигает 10-14%. Вредными примесями являются Ni, Fe, Si и Си, которые снижают коррозионную стойкость М. с. В М. с. с Zr ограничивают содержание примесей А1 и Si, т. к. в присутствии этих элементов Zr не растворяется в расплавленном магнии, образуя с ними тугоплавкие нерастворимые соединения. Растворимость циркония в магнии уменьшают также примеси Fe, Mn и Н. Малые количества Be (иногда Са) используют в качестве тех-нологич. добавок для снижения окисляе-мости М. с. в расплавленном состоянии.

Физические свойствам, с даны в табл. 2. М. с. являются самым лёгким металлич. конструкционным материалом. Плотность (d) M. с. в зависимости от состава колеблется в пределах 1360-2000 кг/м3. Наименьшую плотность имеют магнийлитиевые сплавы. Плотность наиболее широко применяемых М. с. равна 1760-1810 кг/м3, т. е. примерно в 4 раза меньше плотности стали и в 1,5 раза меньше плотности алюминиевых сплавов. Благодаря малой плотности детали из М. с. обладают высокой жёсткостью: относит, жёсткость при изгибе двутавровых балок одинаковой массы и ширины для стали равна 1, для алюминия 8,9, для магния 18,9. М. с. имеют высокую удельную теплоёмкость. Темп-ра поверхности детали из М. с. при одинаковом количестве поглощённого тепла в 2 раза ниже по сравнению с темп-рой детали из малоуглеродистой стали и на 15-20% ниже, чем детали из алюминиевого сплава. Коэфф. термич. расширения М. с. в среднем на 10-15% больше, чем у алюминиевых сплавов.

Табл. 1, - Химический состав и механические свойства наиболее широко применяемых в СССР магниевых сплавов (1 Мн/м2 = 0,1 кгс/мм2)

Тип сплава

Химический состав, %
основные компоненты

примеси, не более
Al

Zn


Mn

Zr

Nd

Al

Si

F

Ni

Сa

Мn

Be

Са
Литейные сплавы
Mg - Al - Zn

8

0,5


0,2


-


-


-

0,25

0,06

0,01

0,1


-

0,002

0,1


8

0,5


0,2


-


-


-

0,08

0,007

0,001

0,004


-

0,002


-
Mg - Zn - Zr


-


4,5


-

0,7


-

0,02

0,03

0,01

0,005

0,03

-

0,001


-
Mg - Nd - Zr


-


0,4


-

0,7

2,5

0,02

0,03

0,01

0,005

0,03


-

0,001


-
Дeфоpмируемые сплавы
Mg - Al - Zn

4

0,5


0,5


-


-


-

0,15

0,05

0,005

0,05


-

0,02

0,1
Mg - Zn - Zr


-


-


-

0,5


-

0,05

0,05

0,05

0,005

0,05

0,1

0,02


-


Тип сплава

Сумма определяемых

примесей

Механические свойва при 20 оС

Вид термической

обработки

Предельные рабочие
тем-ры, °С

Назначение
Мн/м2

Мн/м2

длительно

кратковременно
G 0,2

Gb


б, %
Ли