загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

драм - т. н. пронуклеусам В вегетативном периоде генетич. аппарат М. неактивен, не синтезирует рибонуклеиновую к-ту и на фенотип инфузорий не влияет.

МИКРООРГАНИЗМОВ ФАКТОРЫ РОСТА, биологически активные вещества (ряд аминокислот, витамины, пуриновые и пиримидиновые основания, стерины и др.), в отсутствии к-рых мн. микроорганизмы не растут даже на питат. средах, содержащих необходимые источники энергии, углерода и азота. М. ф. р. оказывают действие в ничтожных количествах. Неспороносные бактерии (Pseudomonas, Mycobacterium), мн. плесневье грибы (Aspergillus, Penicillium) и др. микроорганизмы не нуждаются в М. ф. р., так как способны их синтезировать Аминокислоты необходимы для биосинтеза белка, пурнновые и пиримидиновые основания - для образования нуклеиновых к-т. Среди М. ф. р. особенно важны витамины, являющиеся коферментами мн. ферментов. Так, пиридоксин (витамин Be) участвует в переаминировании и дезаминировании аминокислот, тиамин (витамин Bi) - в декарбоксилировании и т. д. Нек-рые виды дрожжей, молочнокислые бактерии не растут на питат. средах без биотина, тиамина пантотеновой и никотиновой к-т, пиридоксипа и др. Считали, что нек-рые болезнетворные микроорганизмы растут только на средах, содержащих кровь или eё сыворотку, асцитическую жидкость, молочную сыворотку, дрожжевой автолизат. Оказалось, что эти микробы могут расти и без таких веществ, если к питат. среде добавить соответствующие М. ф. р. Если М. ф. р. имеют сложное химич. строение, то потребность в них у разных микроорганизмов может варьировать. Так, в состав молекулы тиамина входят
остатки тиазола и пиридина. Одни виды нуждаются в готовом тиамине, другие синтезируют его, если в среде есть тиазол и пиридин, третьи растут на среде с тиазолом, т. к. синтезируют пиридин, а затем и тиамин, четвёртые размножаются в присутствии пиридина, синтезируя тиазол, а потом и тиамин. Т. н. дикие формы микроорганизмов, способные к синтезу М. ф. р., паз. прототроф-н ы м и. Воздействуя на них мутагена-ми, можно получить мутанты, нуждающиеся в том или ином М. ф. р. Их называют ауксотрофными или дефицитными мутантами и применяют для количеств, определения витаминов, аминокислот и т. д., а также при селекции мутантов, образующих повышенные кол-ва этих веществ. Способность к синтезу М. ф. р. может определять характер взаимоотношений между организмами. Так, если определённый вид дрожжей не растёт из-за отсутствия в питат. среде М. ф. р., то подсев и размножение вида, синтезирующего их, приведёт к одновременному росту обоих видов. У нек-рых насекомых и ракообразных имеются микроорганизмы-симбионты, размножающиеся в кишечнике или особых органах и снабжающие организм хозяина различными витаминами, аминокислотами и т. п. Микроорганизмы, обитающие в рубце и кишечнике жвачных, а также в кишечнике др. животных и человека, выполняют ту же функцию (см. Кишечная флора).

Лит.: Одинцова Е. Н., Микробиологические методы определения витаминов, М., 1959; Иерусалимский Н. Д., Основы физиологии микробов, М., 1963; Роуз Э., Химическая микробиология, пер. с англ., М., 1971. А. А. Имшенецкий.

МИКРООРГАНИЗМЫ, микробы, обширная группа преим. одноклеточных живых существ, различимых только под микроскопом и организованных проще, чем растения и животные. К М. относятся бактерии, микоплазмы, актиномице-ты, дрожжи, микроскопич. грибы и водоросли (иногда к М. причисляются простейшие и вирусы). М. делят на прокариотов (примитивное ядро содержит одну хромосому, не имеет оболочки и делится перетяжкой, в цитоплазме отсутствуют митохондрии, большинство форм лишено хроматофоров) и эукариотов, сходных с клетками высших растений и животных (ядро содержит набор хромосом, имеет оболочку; у мн. нормальный половой цикл, клетки их содержат эндоплазматич. сеть и митохондрии, у фотосинтетиков -хлоропласты). К М.-прокариотам относят бактерии, микоплазмы, актиномицеты, синезелёные водоросли, к М.-эукари-отам - дрожжи, микроскопии, грибы и водоросли. Изучением М. занимается микробиология.

Морфология и жизненный цикл М. очень разнообразны. Так, большинство М.-одноклеточные. Однако мн. плесневые грибы имеют многоклеточный мицелий. М., как1 правило, не содержат хлорофилла, но пурпурные и зелёные фото-автотрофные бактерии, как и микроскопич. водоросли, содержат фотосинтетич. пигменты - бактериохлорофиллы и хлорофилл. Бактерии размножаются делением, дрожжи и микобактерии - почкованием, плесневые грибы - делением клеток и образованием конидий и спор. Бактерии произошли от различных в си-стематич. отношении организмов, актиномицеты родственны грибам, нек-рые нитчатые бактерии близки к синезелёным водорослям, спирохеты - к простейшим и т. д. Все М. делят на патогенные (болезнетворные) и непатогенные. Возбудители большинства инфекц. заболеваний - бактерии, значительно реже -дрожжи, плесневые грибы, актиномицеты.

Микроскопич. грибы, образующие пушистые налёты (колонии) белого, зелёного или чёрного цвета на пищевых продуктах, стали известны человеку раньше, чем дрожжи или бактерии. Изучение дрожжей и бактерий с помощью микроскопа было осложнено тем, что они выращивались на жидких питат. средах, что затрудняло получение чистых культур. Введение в практику плотных питат. сред открыло возможности для выращивания изолированных колоний определённого вида бактерий или дрожжей и тем самым - для изучения их различных свойств. Разработаны методы характеристики и определения систематич. положения М. (см. Микробиологическая техника).

М. широко распространены в природе. В 1 г почвы или грунта водоёма может содержаться 2-3 млрд. М. Полагают, что совр. микробиологии известно не более 10% видов М., существующих в природе: ежегодно описываются всё новые роды и виды М. (так, в 40-60-е гг. 20 в. число изученных видов актиноми-цетов возросло с 35 до 350).

В процессе эволюции М. адаптировались к самым различным экологич. условиям. Известны бактерии, размножающиеся при 65-75 °С (см. Термофильные организмы), психрофильные микроорганизмы, растущие при минус 6 °С, гало-фильные микроорганизмы, размножающиеся в среде, содержащей до 25% NaCl, бактерии, к-рые обитают в воде, охлаждающей атомные реакторы, и переносят облучение в 3-4 млн. р, осмофильные дрожжи, живущие в мёде и варенье, ацидофильные бактерии, размножающиеся в кислых средах при рН 1,0, баротоле-рантные бактерии, выдерживающие давление в неск. сот атм. Необычайная устойчивость М. к различным факторам внешней среды позволяет им занимать крайние границы биосферы: их обнаруживают в грунте океана на глуб. 11 км, на поверхности ледников и снега в Арктике, Антарктике и высоко в горах, в почве пустынь, в атмосфере на высоте 20 км и т. д.

Благодаря успехам биохимии М. и особенно развитию генетики микроорганизмов и молекулярной генетики было выяснено, что мн. процессы биосинтеза и энергетич. обмена (транспорт электронов, цикл трикарбоновых к-т, синтез нуклеиновых к-т, белка и др.) протекают у М. так же, как в клетках высших растений и животных. Т. о., в основе роста, развития, размножения как высших, так и низших форм жизни лежат единые процессы. Наряду с этим М. присущи специфич. ферментные системы и био-химич. реакции, не наблюдаемые у др. существ. На этом основана способность М. разлагать целлюлозу, лигнин, хитин, углеводороды нефти, кератин, воск и др. Необычайно разнообразны у М. пути получения энергии. Хемоавтотрофы получают её за счёт окисления неорганич. веществ, фотоавтотрофные бактерии используют энергию света в той части спектра, к-рая недоступна высшим растениям, и т. д. Нек-рые М. способны

усваивать молекулярный азот (см.Лзот-фиксирующие микроорганизмы), синтезировать белок за счёт самых различных источников углерода, вырабатывать множество биологически активных веществ (антибиотики, ферменты, витамины, стимуляторы роста, токсины и др.). Применение М. в с.-х. практике и пром-сти основано на этих специфич. особенностях их обмена веществ. См. также ст. Брожение, Микробиологический синтез и лит. при них.

А. А. Имшенецкий.

МИКРОПИЛЕ (от микро... и греч. pyle - ворота, отверстие), 1) одно или неск. отверстий в оболочке яиц насекомых, паукообразных, нек-рых моллюсков, рыб и ряда др. животных, через к-рые сперматозоид проникает в яйцо. См. также Оплодотворение. 2) Пыльцевход, семявход, отверстие на вершине семяпочки у высших семенных растений, через к-рое в неё при опылении проникает пыльцевая трубка. М. образуется вследствие того, что остаются несомкнутыми покровы, окружающие семяпочку.

МИКРОПОРИСТЫЕ РЕЗИНЫ, пористые материалы с размером пор ~ 0,4 мкм, получаемые из твёрдых каучуков и ла-тексов; см. также Пористые резины.

МИКРОПРИВОД, электропривод с исполнит, электродвигателем мощностью примерно до 500 вт. Применяется в устройствах автоматики, кино- и радиоаппаратуре, бытовых электроприборах и др. Различают М. постоянного и переменного тока. В качестве регуляторов в М. постоянного тока служат магнитные и транзисторные усилители, в реверсивных М.- двухтактные магнитные усилители с внутр. обратной связью.

В М. переменного тока для управления исполнит. электродвигателями применяют магнитные и магнитно-полупроводниковые усилители, а также преобразователи частоты на транзисторах и тиристорах. При этом частота вращения электродвигателей регулируется изменением амплитуды и частоты напряжения на статорной обмотке. Необходимая жёсткость механич. характеристик электродвигателей достигается введением обратной связи по частоте вращения.

Лит.: Авен О. И., Д о м а н и ц-кий С. М., Бесконтактные исполнительные устройства промышленной автоматики, М.- Л., 1960.

МИКРОПРИЧИННОСТИ УСЛОВИЕ, требование, согласно к-рому условие причинности (причина должна предшествовать во времени следствию) выполняется вплоть до сколь угодно малых расстояний и промежутков времени. Обычно М. у. относят к расстояниям =<10-14 см и временами =< 10~24 сек.

В относительности теории показывается, что допущение о существовании физ. сигналов, распространяющихся со сверхсветовой скоростью, приводит к нарушению требования причинности. Таким образом, М. у. означает запрет на сверхсветовые сигналы "в маломх В квантовой теории, где физ. величинам ставятся в соответствие операторы, М. у. выступает как требование переставимо-сти любых операторов, относящихся к двум точкам пространства-времени, если эти точки нельзя связать световым сигналом; такая переставимость означает, что физ. величины, к-рым соответствуют эти операторы, могут быть точно определены независимо и одновременно. М. у. существенно в квантовой теории поля, особенно в дисперсионном и аксио-матич. подходах, к-рые не опираются на конкретные модельные представления о взаимодействии и поэтому могут быть использованы для прямой проверки М. у. В наиболее разработанной части квантовой теории поля - квантовой электродинамике М. у. экспериментально проверено до расстояний =>10~13см (и соответственно, времён =>10~25 сек).

Нарушение М. у. привело бы к необходимости радикального изменения способа описания физ. процессов, отказа от принятого в совр. теориях динамич. описания, при котором состояние физ. системы в данный момент времени (следствие) определяется её состояниями в предшествующие моменты времени (причина).

Лит. см. при ст. Квантовая теория поля, Причинности принцип. В. И. Григорьев.

МИКРОПРОГРАММА, связная совокупность микрокоманд в цифровых вычислительных машинах. Каждая микрокоманда указывает выполняемые микрооперации или микроприказы, адрес след, микрокоманды, продолжительность самой микрокоманды и особые действия, относящиеся к операциям контроля. Одна М. может вызывать другую в качестве микроподпрограммы. Меняя последовательность и состав микрокоманд, т. е. изменяя структуру М., можно изменять систему команд ЦВМ, приспосабливая её к определённому классу задач или обеспечивая программную совместимость с др. ЦВМ. М. обычно хранятся в специализированной памяти, более быстродействующей, чем оперативная память. Длина М. обычно составляет от 10 до 100 микрокоманд, а микрокоманда занимает от 16 до 100 и более двоичных разрядов. Объём М. в малых ЦВМ составляет 256-1024 16-разрядных слова, в средних и больших ЦВМ от 1024 до 819650-100-разрядных слов.

Лит.: Булей Г., Микропрограммирование, пер. с франц., под ред. М. Д. Пебарта, М.. 1973. А. В. Гусев.

МИКРОПРОГРАММНОЕ УПРАВЛЕНИЕ, вид иерархического управления работой цифровых вычислит, машин, при к-ром каждая команда является обращением к последовательности т. н. микрокоманд, обычно более низкого уровня, чем сама команда. Набор микрокоманд называется микропрограммой и обычно хранится в постоянной памяти ЦВМ, составляющей неотъемлемую часть устройства управления. Записанные в памяти микрокоманды определяют работу всех устройств машины, выбирая в каждом такте нужные совокупности элементарных машинных операций, а последовательность микрокоманд обеспечивает выполнение заданной команды. Микрокоманда может содержать три части: оперативную, в к-рой указываются управляющие входы всех исполнит, устройств машины; адресную, определяющую адрес следующей микрокоманды с учётом условий логич. переходов (передач управления); временную, определяющую время выполнения микрокоманды. При этом код конкретной операции программы совпадает с адресом первой микрокоманды соответствующей микропрограммы.

Достоинства М. у. состоят в том, что оно обеспечивает операционную гибкость ЦВМ и возможность изменения системы команд и состава машинных операций в зависимости от особенностей решаемых
задач и условий применения машины; позволяет сравнительно престо реализовать различные сложные операции при значительной экономии машинного времени; даёт возможность строить диа-гностич. микротесты для определения с большой точностью места неисправности в машине. Осн. недостаток, обусловливающий ограниченное распространение М. у., - необходимость применения быстродействующих запоминающих устройств небольшого объёма (неск. тыс. слов) с временем обращения, соизмеримым с временем выполнения элементарных операций в исполнит, устройствах. В вычислит, машинах 3-го поколения широко используется также метод управления, при к-ром микропрограмма реализуется с помощью системы устройств, а не в виде команд, записанных в памяти ЭВМ; высокое быстродействие, большие объёмы оперативной памяти и богатое матем. обеспечение этих машин позволяют сделать управление более эффективным, чем при М. у. в ЦВМ 2-го поколения.

В. П. Исаев.

МИКРОПРОЕКЦИЯ (от микро... и лат. projectio, букв. - выбрасывание вперёд), способ получения на экране (а при микрофото- и микрокиносъёмке -на фоточувствительном слое) даваемых микроскопом изображений оптических малых объектов. При М. объектив 2 микроскопа (рис.) образует, как обычно, увеличенное действительное изображение /' объекта /; окуляр же 3 работает как проекционная система (для этого микроскоп фокусируют так, чтобы /' находилось перед передним фо-

[1617-3.jpg]

от окуляра до экрана. М. применяют также для получения изображений ми-кроскопич. объектов на фотокатоде элек-троннооптического преобразователя при исследованиях в ультрафиолетовых и инфракрасных лучах, на светочувствит. слое передающей трубки в телевизионной микроскопии и т. д. Лит. см. при ст. Микроскоп.

Принципиальная схема образования изображения при микропроекции.

Л. А. Федин.

МИКРОРАЙОН (от микро... и район), первичная единица современной жилой застройки города. М. состоит из комплекса жилых домов и расположенных вблизи них учреждений повседневного культурно-бытового обслуживания населения (детские сады и ясли, школы, столовые, магазины товаров первой необходимости), спортивных площадок и садов. Наиболее последовательное проведение принципа микрорайонирования возможно преим. при застройке свободных Teppt торий. Илл. см. т. 2, стр. 302.

МИКРОРАКЕТНЫЙ ДВИГАТЕЛЬ ракетный двигатель с тягой от неск. десятков до сотых долей н (с многократным запуском и большим числом срабатываний). М. д. применяют в OCHOI ном в качестве стабилизирующих и opi ентационных двигателей, а также ИНДР видуальных, служащих для передвиж( ния космонавта в свободном полёте вн кабины (рис.).

Микроракетный жидкостный двигатель тягой 2 - 450 мн, работающий на метане и кислороде; предназначен для системы ориентации космических летательных аппаратов (США).

МИКРОРЕЛЬЕФ, формы рельефа, Я1 ляющиеся как бы деталями более круп ных форм поверхности того или иног участка Земли (напр., бугры, прируслс вые валы и косы, небольшие воронки, пс лигональные грунты, песчаная рябь степные блюдца и др.). М. обязан свои! происхождением прежде всего экзогенньп рельефообразующим факторам. См. так же Рельеф.

МИКРОСВАРКА, сварка деталей и цветных и чёрных металлов малой тол щины (менее 0,5мм) и сечений (до 10мм2] а также деталей из металлов с полупрс водниковыми кристаллами. При М. при меняют оптич. приборы (лупу или ми кроскоп), к-рые крепятся на сварочно! машине. В зависимости от особенносте! свариваемых изделий, технологич. и др требований выполняют контактную, элек трическую или конденсаторную М., хо лодную, ультразвуковую, термокомпрес сионную, электроннолучевую, лазернук и др., а также комбинированную М. При меняют в электронной, радиотехнич пром-сти, приборостроении и др. отрас лях (см. Сварка).

МИКРОСКОП (от микро... и греч skopeo - смотрю), оптический прибо] для получения сильно увеличенных изо бражений объектов (или деталей и: структуры), невидимых невооружённыр глазом. Человеческий глаз представляв собой естеств. оптич. систему, характе ризующуюся определённым р а з р е ш е н и е м, т. е. наименьшим расстоя нием между элементами наблюдаемой объекта (воспринимаемыми как точки илз линии), при к-ром они ещё могут быт: отличены один от другого. Для нормаль кого глаза при удалении от объекта н; т. н. расстояние наилучше го видения (D = 250 мм) мини мальное разрешение составляет пример но 0,08 мм (а у мн. людей - ок. 0,20 мм). Размеры микроорганизмов, большинства растит, и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены М. различных типов. С помощью М. определяют форму, размеры, строение и мн. др. характеристики микрообъектов. М. даёт возможность различать структуры с расстоянием между элементами до 0,20 мкм.

Историческая справка. Свойство системы из двух линз давать увеличенные изображения предметов было известно уже в 16 в. в Нидерландах и Сев. Италии мастерам, изготовлявшим очковые стёкла. Имеются сведения, что ок. 1590 прибор типа М. был построен 3. Янсеном (Нидерланды). Быстрое распространение М. и их совершенствование, гл. обр. ремесленниками-оптиками, начинается с 1609-10, когда Г. Галилей, изучая сконструированную им зрительную трубу, использовал её и в качестве М., изменяя расстояние между объективом и окуляром. Первые блестящие успехи применения М. в науч. исследованиях связаны с именами Р. Гука (ок. 1665; в частности, он установил, что животные и растит, ткани имеют клеточное строение) и особенно А. Левенгука, открывшего с помощью М. микроорганизмы (1673-77). В нач. 18 в. М. появились в России; здесь Л. Эйлер (1762; "Диоптрика", 1770-71) разработал методы расчёта оптич. узлов М. В 1827 Дж. Б. Амичи впервые применил в М. иммерсионный объектив. В 1850 англ, оптик Г. Сорби создал первый М. для наблюдения объектов в поляризованном свете. Широкому развитию методов микро-скопич. исследований и совершенствованию различных типов М. во 2-й пол. 19 и в 20 вв. в значит.степени способствовала науч. деятельность Э. Аббе, к-рый разработал (1872-73) ставшую классической теорию образования изображений несамосветящихся объектов в М. Англ, учёный Дж. Сиркс в 1893 положил начало интерференционной микроскопии. В 1903 австр. исследователи Р. Зшмонди и Г. Зидентопф создали т. н. ультрамикроскоп. В 1935 Ф. Цернике предложил метод фазового контраста для наблюдения в М. прозрачных слабо рассеивающих свет объектов. Большой вклад в теорию и практику микроскопии внесли сов. учёные - Л. И. Мандельштам, Д. С. Рождественский, А. А. Лебедев, В. П. Линник.

Оптическая схема, принцип действия, увеличение и разрешающая способность микроскопа. Одна из типичных схем М. приведена на рис. 1. Рассматриваемый объект (препарат) 7 располагают на предметном стекле 10. Конденсор 6 концентрирует на объекте пучок света, отражающегося от зеркала 4. Источником света в М. чаще всего служит спец. осветитель, состоящий из лампы и линзы-коллектора (соответственно / и 2 на рис.); иногда зеркало направляет на объект обычный дневной свет. Диафрагмы - полевая 3 и апертурная 5 ограничивают световой пучок и уменьшают в нём долю рассеянного света, попадающего па препарат "со стороны" и не участвующего в формировании изображения.

Возникновение изображения препарата в М. в основных (хотя и наиболее простых) чертах можно описать в рамках геометрической оптики. Лучи света, исходящие от объекта 7, преломляясь в объективе 8, создают перевёрнутое и увеличенное действительное изображение оптическое Т объекта. Это изображение рассматривают через окуляр 9. При визуальном наблюдении М. фокусируют так, чтобы 7' находилось непосредственно за передним фокусом окуляра Fок. В этих условиях окуляр работает как лупа: давая дополнит, увеличение, он образует мнимое изображение 7" (по-прежнему перевёрнутое); проходя через оптич. среды глаза наблюдателя, лучи от 7" создают на сетчатке глаза действит. изображение объекта. Обычно 7" располагается на расстоянии наилучшего видения D от глаза. Если сдвинуть окуляр так, чтобы Т оказалось перед FOK, то изображение, даваемое окуляром, становится действительным и его можно получить на экране или фотоплёнке; по такой схеме производят, в частности, фото- и киносъёмку микроскопич. объектов (см. Микропроекция).

Общее увеличение М. равно произведению линейного увеличения объектива
[1617-4.jpg]

берется в мм). Обычно объективы М. имеют увеличения от 6,3 до 100, а окуляры - от 7 до 15 (их значения гравируются на оправах). Поэтому общее увеличение М. лежит в пределах от 44 до 1500.

Разумеется, технически возможно применить в М. объективы и окуляры, к-рые дадут общее увеличение, значительно превышающее 1500. Однако обычно это нецелесообразно. Большие увеличения не являются самоцелью - назначение М. состоит в том, чтобы обеспечить различение как можно более мелких элементов структуры препарата, т. е. в максимальном использовании разрешающей способности М. А она имеет предел, обусловленный волновыми свойствами света. (В геометрич. оптике, в рамках к-рой выше было рассмотрено образование изображения в М., отвлекаются от этих свойств света, но предел возможностей М. определяют именно они.) Согласно общей закономерности, наблюдая объект в к.-л. излучении с длиной волны X, невозможно различить элементы объекта, разделённые расстояниями, намного меньшими, чем X. Эта закономерность проявляется и в М., причём количеств, её выражение несколько различно для самосветящихся и несамосветящихся объектов. Изображение испускающей монохроматический свет точки, даваемое даже идеальным (не вносящим никаких искажений) объективом, не воспринимается глазом как точка, так как вследствие дифракции света фактически является круглым светлым пятнышком конечного диаметра d, окружённым неск. попеременно тёмными и светлыми кольцами (т. н. дифракционное пятно,
[1617-5.jpg]

ния среды, разделяющей светящуюся точку и объектив, ит - половина угла раствора светового пучка, исходящего из точки и попадающего в объектив). Если две светящиеся точки расположены близко друг от друга, их дифракционные картины накладываются одна на другую, давая в плоскости изображения сложное распределение освещённости (рис. 2). Наименьшая относит, разница освещённостей, к-рая может быть замечена глазом, равна 4%. Этому соответствует наименьшее расстояние

Рис. 2. Распределение освещённостей в изображении двух близких "точек" в предельном случае их визуального разрешения.
[1617-6.jpg]

апертуры ооъектива и конденсора м. (значения апертур гравируются на оправах).

Изображение любого объекта состоит из совокупности изображений отд. элементов его структуры. Мельчайшие из них воспринимаются как точки, и к ним полностью применимы ограничения, следующие из дифракции света в М.- при расстояниях между ними, меньших предельного разрешения М., они сливаются и не могут наблюдаться раздельно. Существенно повысить разрешающую способность М. можно, только увеличивая Л. В свою очередь, увеличить А можно лишь за счёт повышения показателя преломления и среды между объектом и объективом (т. к. sin ит =5 1). Это и осуществлено в иммерсионных системах, числовые апертуры к-рых достигают величины А = 1,3 (у обычных "сухих" объективов макс. А " 0,9).

Существование предела разрешающей способности влияет на выбор увеличений, получаемых с помощью М. Увеличения от 500 А до 1000 А наз. полезными, т. к. при них глаз наблюдателя различает все элементы структуры объекта, разрешаемые М. При этом исчерпываются возможности М. по разрешающей способности. При увеличениях св. 1000 А не выявляются никакие новые подробности структуры препарата; всё же иногда такие увеличения используют - в микрофотографии, при проектировании изображений на экран и в нек-рых др. случаях. Существенно более высокими, чем у М., разрешающей способностью и, следовательно, полезным увеличением обладает электронный микроскоп.
1616.htm
МИГРАЦИИ НАСЕЛЕНИЯ, перемещения населения, связанные с переменой места жительства. М. н. являются одной из важнейших проблем народонаселения и рассматриваются не только как простое механич. передвижение людей, а как сложный обществ, процесс, затрагивающий многие стороны социально-экономич. жизни. М. н. сыграли выдающуюся роль в истории человечества, с ними связаны процессы заселения, хозяйств, освоения земли, развития производительных сил, образования и смешения рас, языков и народов. (О первоначальном заселении Земли и расселении человека см. Земля, раздел Человек и Земля.) М. н. имеют разнообразные аспекты; их характер и структуру, последствия, к-рые они вызывают, исследуют ряд наук -демография, экономика, география, социология, статистика, этнография и др. Прикладное значение имеют исследования М. н. для целей общеэкономич. и регионального планирования, использования трудовых ресурсов.

Различают М.н. внешние (межконтинентальные и межгосударственные) и внутренние (внутригосударственные): межрайонные и переселения населения из сел. местности в города (см. Урбанизация). М. н. могут быть постоянными (перемещение на постоянное или длительное местожительство, см. Иммиграция населения, Эмиграция населения) и временными, сезонными (переезд на относительно короткий срок). Статистика ООН признаёт мигрантами лиц, проживающих на новом месте более 6 мес. Иногда к М. н. относят туризм, курортные поездки, паломничество и др., что, однако, неправильно, ибо здесь нет смены места жительства. Также нельзя относить к М. н. так наз. маятниковую миграцию - дальние каждодневные поездки на работу.

С каждой обществ, формацией связаны специфич. формы и причины М. н., объёмы и направления миграционных потоков. К самым ранним М. н. относятся продолжавшиеся тысячелетиями стихийные расселения древних племён по всему земному шару, носившие мирный характер освоения новых территорий. Позднее, в эпоху распада первобытнообщинного строя, с развитием произ-ва и ростом населения, массовые передвижения его происходили в результате столкновения племён; всё это сопровождалось образованием и разрушением раннеклассовых государств, формированием новых народов. В конце антич. времени и в начале средневековья в итоге Великого переселения народов произошло смешение различных племен, оказавшее решающее влияние на формирование совр. этнич. состава европ. населения. В период феодализма массовые М. н. были связаны с бегством крестьян от крепостнич. гнёта на свободные земли, а также с принудительным переселением крепостных на захваченные феодалами земли.

Внешние (крупные межконтинентальные) М. н. последовали после Великих географических открытий. В эпоху первонач. накопления капитала эти М. н. были связаны с колонизацией открытых и захваченных европейцами земель в Америке, Азии и Африке, истреблением и вытеснением коренного населения в глубь страны. В 16-18 вв. значит, часть Америки была заселена свободными переселенцами из Европы и неграми-невольниками из Африки; до нач. 19 в. ввоз рабов превышал приток свободных людей (см. Колонизация, Рабство).

С развитием капитализма на протяжении 19 в. объём М.н. возрастает. Усиливаются межгосударств. М. н., порождённые относительным перенаселением одних стран и нехваткой рабочих рук в др. странах. Осн. очагами притяжения мигрантов стали США и Канада, в меньшей степени - Австралия и Новая Зеландия, от дельные страны Юж. Америки - Аргентина, Бразилия, а также Юж. Африка. Для переселенческой М. н. периода развитого капитализма было характерно то, что вначале, вплоть до 90-х гг. 19 в., миграционный поток исходил из промыш-ленно развитых капиталистич. стран Европы - Великобритании, Нидерландов, Германии, скандинавских стран, а затем, с кон. 19 в., ещё более многочисленный поток составили выходцы из менее индустриальных, но охваченных агр. кризисом стран Юж. и Вост. Европы - Италии, Польши, Венгрии, России и др. (см. табл. 1). В. И. Ленин назвал эти два этапа "старой иммиграцией" и "новой иммиграцией" (см. "Капитализм и иммиграция рабочих", в кн.: Поли. собр. соч., 5 изд., т. 24, с. 90). Наибольшей интенсивности эмиграция из Европы достигла в 1900-14 (за это время выехало ок. 20 млн. чел., почти 3/з из них осело в США). После 1-й мировой войны 1914- 1918 по мере расширения и углубления общего кризиса капитализма, появления постоянной армии безработных М. н. резко сократились, т. к. натолкнулись на ограничительные законодательные меры со стороны ряда стран, особенно США и Австралии (т. н. рестрикционные ограничения).

Табл. 1.-Эмиграция из Европы, тыс. чел.
[1616-1.jpg]

Иммиграция в Канаду (гл. обр. из Европы) составила (тыс. чел.): 709,6 в 1851-75, 667,2 в 1876-1900, 521,5 в 1901-05, 932,0 в 1906-10, 1452,0 в 1911-14, 402,5 в 1915-19, 637,5 в 1920- 1925, 731,5 в 1926-30, 86,3 в 1931- 1935, 72,2 в 1936-40.

В Азии в 1-й трети 20 в. получили размах межгосударств. М. н., связанные с массовой вербовкой дешёвой рабочей силы (гл. обр. в Китае и Индии) для работы на иностр. плантациях в странах Юго-Вост. Азии и Вост. Африки.

Наряду с М. н., в основе к-рых преобладающее значение принадлежит со-циально-экономич. факторам, в отд. периоды возникают М. н. по политич. причинам (образование новых гос-в, изменение гос. границ, политико-экономич. преобразования в гос-вах). Иногда существ, роль в М. н. играют нац. и религ. факторы.

Большие размеры приняли М. н. во время и после 2-й мировой войны 1939- 1945. Значит, контингент мигрантов составили беженцы и перемещённые лица. В итоге поражения фаш. Германии из Польши и Чехословакии было организованно переселено ок. 9,7 млн. немцев в ГДР, ФРГ и Зап. Берлин; соответственно в освобождённые р-ны переместилось ок. 5 млн. поляков и ок. 2,3 млн. чехов. При образовании на терр. быв. брит, колонии Индии двух независимых гос-в - Индии и Пакистана обмен населения между этими гос-вами, в основном по религ. признаку, охватил ок. 16 млн. мусульман и индуистов. Репатриация японцев после войны в Японию из Китая, Кореи и др. р-нов Азии охватила ок. 6,3 млн. чел.

После войны рестрикционные ограничения в межгосударств. М. н. ещё более усиливаются (в частности, появляется спец. термин "нежелательный иностранец"). В нач. 1970-х гг. иммиграция (из Европы) в США не превышала ежегодно 100-150 тыс. чел., а в Канаду и Австралию - по 100 тыс. Появилась своеобразная М. н. в результате переманивания высококвалифицированных специалистов, т. н. "утечка мозгов"; начало ей было положено в 1930-х гг., когда США получили монопольную возможность отбора учёных - беженцев из фаш. Германии.

В 1960- нач. 70-х гг. широкое развитие получили М. н. из менее развитых стран Европы в более развитые - ФРГ, Францию, Великобританию, Нидерланды, Бельгию, Швейцарию (число мигрантов, гл. обр. неквалифицированных рабочих, здесь достигает в разные годы 5- 8 млн. чел.). Иммигранты в капиталистич. странах, как правило,- наиболее низкооплачиваемая, эксплуатируемая и бесправная часть трудящихся. Особенно тяжёлым оказывается положение иммигрантов, относящихся к др. расовым типам (индейцев в ЮАР, мексиканцев и пуэрториканцев в США и т. д.).

Внутренние М. н. в капиталистич. странах вызываются преим. теми же причинами, что и внешние: переселение в поисках работы из относительно перенаселённых, малоземельных р-нов во вновь осваиваемые р-ны, из сел. местности в города, сезонные перемещения в сел. местности - на с.-х. работы и в город (отходничество), переселение крестьян на свободные земли и др. Внутренние М. н. особенно распространены в странах с обширной территорией, разнообразными географич. и экономич. условиями. В США, напр., по данным 1960, ок. 30% лиц жили вне тех штатов, где они родились; здесь продолжается "вековое" усиление заселённости зап. и юго-западных штатов, усиление сезонных перекочёвок с.-х. рабочих, переселение негров из р-нов т. н. "чёрного пояса" на север страны, усиленное притяжение населения в крупные города и агломерации. В капиталистич. странах Европы внутренние М. н. сравнительно невелики. В развивающихся странах картина подвижности населения довольно пестра, но в целом - чем выше уровень развития производит, сил, тем внутренние М. н. сильнее.

Осн. вид совр. внутренних М. н.- приток населения из сел. местности в города. С 1920 по 1970 в целом в мире число горожан выросло почти на 1 млрд. чел., причём св. Va - за счёт механич. притока населения.

В. И. Ленин придавал большое значение внутренним М. н. в России (см. Колонизация в России), способствовавшим заселению юж. степных и лесостепных р-нов, Поволжья, Урала и Сибири, а также росту городов (с 16 до нач. 20 вв. переселилось 25-30 млн. чел.) (см. "Развитие капитализма в России>, там же, т. 3, с. 553-602). В СССР в условиях со-циалистич. строительства с ликвидацией классовых противоречий, порождающих массовые М. н., отходят в прошлое социальные бедствия, вынуждающие население покидать свою страну или родные края. Но М. н. не исчезают, хотя их виды, формы, а главное причины коренным образом меняются. Гос. планирование нар. х-ва создаёт предпосылки для организованного потока мигрантов внутри страны, лишая М. н. черт стихийности. Они регулируются рядом либо прямых, либо косвенных экономич. и социальных рычагов и призваны непосредственно отвечать потребностям нар. х-ва в рациональном размещении населения. В социалистич. странах происходит усиленное развитие малоосвоенных районов, и в эти районы в первую очередь направляется миграция. В СССР размах внутренней М. н. связан с индустриализацией и урбанизацией страны. В 1926-39 на Урал, в Сибирь, Казахстан, Ср. Азию, Д. Восток переселилось ок. 4,7 млн. чел. В годы Великой Отечеств, войны 1941-45 произошли резкие терр. сдвиги в размещении населения в связи с эвакуацией в вост. р-ны с оккупированных р-нов и прифронтовой полосы (за 1941-42 ок. 20-25 млн. чел.). В после-воен. период продолжались М. н. в новые пром. р-ны, к новостройкам, в р-ны освоения целинных земель (только за 1959-1970 приток в Казахстан и Ср. Азию составил 1,2 млн. чел.). Высокого уровня достиг процесс урбанизации. За 1927-1969 гор. население СССР выросло на 105,4 млн. чел.; на долю миграции пришлось 59,7 млн. чел. (см.также ст. Город).

Лит.: Ленин В. И., Развитие капитализма в России, Поли. собр. соч., 5 изд., т. 3; его же, Капитализм и иммиграция рабочих, там же, т. 24; Марианьский А., Современные миграции населения, пер. с польск., М., 1969; Покшишевский В. В., География населения" зарубежных стран, М., 1971; Статистика миграции населения, М., 1973; П е р е в е д е н ц е в В.И., Современная миграция населения в СССР, в сб.: Народонаселение и экономика, М., 1967; Миграция сельского населения, М., 1970; Миграция населения РСФСР, М., 1973; Р ы-баковский Л. Л., Региональный анализ миграций, М., 1973; International migrations, v. 1-2, N. Y., 1929-1931; International migration 1945-1957, Geneva, 1959.

С. И. Брук.
1615.htm
МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ, раздел теоретич. механики, в к-ром изучаются движения материальных тел, масса которых изменяется во время движения. Основоположники М. т. п. м.- И. В. Мещерский и К. Э. Циолковский. Задачи М. т. п. м. выдвигаются развитием авиационной и ракетной техники, а также теоретич. механики.

Изменение массы тела (точки) во время движения может обусловливаться отделением (отбрасыванием) частиц или их присоединением (налипанием). При полёте совр. реактивных самолётов с воздушно-реактивными двигателями происходят одновременно как процессы присоединения, так и отделения частиц. Масса таких самолётов увеличивается за счёт частиц воздуха, засасываемых в двигатель, и уменьшается в результате отбрасывания частиц - продуктов горения топлива. Основное векторное дифференциальное ур-ние движения точки переменной массы для случая присоединения и отделения частиц (впервые полученное в 1904 Мещерским) имеет вид:
[1614-1.jpg]

обусловленная присоединением частиц. Для совр. ракет ур-ние движения получается из (*) при условии Ф2 = 0; оно было получено Мещерским в 1897.

В М. т. п. м. рассматриваются 2 класса задач: определение траекторий центра масс и определение движения тела переменной массы около центра масс. В ряде случаев можно найти траекторные характеристики движения центра масс, исходя из ур-ний динамики точки переменной массы. Изучение движения тел переменной массы около центра масс важно для исследования динамич. устойчивости реальных объектов (ракет, самолётов), их управляемости и манёвренности. К задачам М. т. п. м. относится также отыскание оптимальных режимов движения, т. е. определение таких законов изменения массы тела или точки, при к-рых кинематич. или динамич. характеристики их движения становятся наилучшими. Наиболее эффективный метод решения таких задач - вариационное исчисление.

Важной задачей механики тел переменной массы с твёрдой оболочкой является изучение движения этих тел при нек-рых дополнит, условиях, налагаемых на скорость центра масс. Такие задачи возникают, напр., при изучении движения телеуправляемых ракет и беспилотных самолётов, наводимых на цель автоматически или по радиокомандам с Земли. Большое число работ по М. т. п. м. относится к изучению движения небесных тел. Допуская, что увеличение массы небесного тела происходит за счёт налипания кос-мич. пыли, приходят к дополнит, условию о равенстве нулю абс. скорости налипающих частиц.

Лит.: Циолковский К. Э., Собр. соч., т. 2, М., 1954; Мещерский И. В., Работы по механике тел переменной массы, 2 изд., М., 1952; Космодемьянский А. А., Механика тел переменной массы, ч. 1, [М.], 1947; его же, Курс теоретической механики, 3 изд., ч. 2, М., 1966; М и е л е А., Механика полета (теория траекторий полёта), пер. с англ., М., 1965.

А. А. Космодемьянский.

МЕХАНИКИ УРАВНЕНИЯ КАНОНИЧЕСКИЕ, уравнения Гамильтона, дифференциальные ур-ния движения механич. системы, в к-рых переменными, кроме обобщённых косрдинат qi, являются обобщённые импульсы pi', совокупность qi и pt наз. канонич. переменными. М. у. к. имеют вид:
[1614-2.jpg]

где H(qt, pi, t) - функция Гамильтона, равная (когда связи не зависят от времени, а действующие силы потенциальны) сумме кинетич. и потенциальной энергий системы, выраженных через канонич. переменные, s - число степеней свободы системы. Интегрируя эту систему обыкновенных дифференц. ур-ний 1-го порядка, можно найти все qt и pt как функции времени t и 2s постоянных, определяемых по начальным данным.

М. у. к. обладают тем важным свойством, что позволяют с помощью т. н. канонич. преобразований перейти от qi к pt к новым канонич. переменным Qi<,qt,pt,t)w.Pi(qt,pt,t), к-рые тоже удовлетворяют М. у. к., но с другой функцией H(Qt,Pi,t). Таким путем М. у. к. можно привести к виду, упрощающему процесс их интегрирования. М. у. к. используются, кроме классич. механики, в статистич. физике, квантовой механике, электродинамике и др. областях физики.

С. М. Торг.

МЕХАНИКО-МATEMATИЧЕСКОЕ ОБРАЗОВАНИЕ, система подготовки специалистов высшей квалификации для н.-и. и преподавательской работы в области математики, механики и смежных с ними отраслей науки, техники, экономики, пром-сти и с. х-ва. В СССР принято различать общее математич. образование, к-рое даёт средняя общеобразовательная школа, где основы математич. науки изучаются с 1-го класса, специальное и вспомогат. М.-м. о.

Специальное М.-м. о. дают механико-математич. и физико-математич. ф-ты (отделения) ун-тов и пед. ин-тов. В России спец. М.-м. о. впервые стало осуществляться в Академии, ун-те в Петербурге (осн. в 1726), затем в Моск. ун-те (1755) и Учительской гимназии в Петербурге (1803). Уже в 18 в. из ун-тов вышли видные деятели рус. математич. науки и просвещения: С. Е. Гурьев, С. Я. Румов-ский, Т. Ф. Осиповский и др.; на них большое влияние оказали пед. взгляды Л. Эйлера. В 19 в. спец. М.-м. о. получило развитие в Казанском, Харьковском, Киевском, Петербургском, Новороссийском (Одесском), Тартуском (Дерптском) и др. ун-тах, воспитанниками к-рых были Н. И. Лобачевский, М. В. Остроградский, П. Л. Чебышев, Н. Е. Жуковский, А. М. Ляпунов и др., ставшие основоположниками новых отраслей и разделов математики и механики и способствовавшие совершенствованию общего и спец. М.-м. о. в России. В нач. 20 в. отечественная математич. школа была представлена такими учёными, как А. М. Ляпунов, А. А. Марков, А. Н. Крылов (Петербург), Н. Е. Жуковский, Д. Ф. Егоров, Н. Н. Лузин, С. А. Чаплыгин (Москва), С. Н. Бернштейн (Харьков) и др. Физико-математич. ф-ты ун-тов готовили преим. преподавателей математики для гимназий, реальных уч-щ, высших и средних спец. уч. заведений. Университетские курсы достаточно полно отражали содержание и уровень развития математики и механики того времени. В этот период механика составляла естеств. часть спец. М.-м. о.

Уже в первые годы Сов. власти ун-ты стали крупнейшими уч. и науч. математич. центрами. Индустриализация страны потребовала приближения математич. подготовки специалистов к нуждам развивающейся пром-сти. В нач. 30-х гг. университетское М.-м. о. подверглось существ, реорганизации. Были выделены механич. специальности, в первую очередь по аэродинамике, гидродинамике, теории упругости, общей механике; в уч. планах нашли отражение совр. науч. идеи (в частности, функциональный анализ, тензорная геометрия и др.); во мн. ун-тах физико-математич. ф-ты разделены на механико-математич. и физические, в нек-рых - созданы н.-и. ин-ты механики и математики. В 50-60-е гг. в ун-тах были организованы ф-ты вычислит, математики, кибернетики, авто-матич. систем управления, в ряде втузов - ф-ты прикладной математики. Ун-ты готовят математиков и механиков-теоретиков для различных отраслей нар. х-ва, преподавателей ср. и высшей школы, сотрудников н.-и. учреждений. Студенты-математики, помимо общенаучных (в т. ч. и математических - математич. анализ, высшая алгебра, анали-тич. геометрия и др.) дисциплин, изучают теоретич. механику, теорию функций комплексного переменного, теорию функций действительного переменного и функциональный анализ, математич. логику, теорию вероятностей и математич. статистику, дифференциальные ур-ния, математич. физику и др. В 50-е гг. в уч. планы введены курсы программирования для ЭВМ, усилена подготовка по вычислит, математике; в большинстве ун-тов созданы вычислит, центры. Значительно расширилась подготовка специалистов в области механики, особенно в связи с исследованием космоса, развитием автоматики и автоматич. систем управления, необходимостью исследования механич. свойств как старых, так и новых синте-тич. материалов. Студенты-механики получают основат. математич. подготовку (близкую той, к-рую получают студенты-математики), изучают теорию упругости, теорию пластичности, гидро- и аэродинамику, сопротивление материалов и др. Учителей математики для ср. школы в основном готовят пед. ин-ты. В уч. планах значит, место занимают общема-тематич., общепед. и методич. дисциплины. Студенты изучают основания арифметики и геометрии, теорию вероятностей, математич. логику, курс математич. машин и программирование для ЭВМ, общую физику и астрономию. Большое внимание уделяется курсу элементарной математики, методике преподавания математики, пед. практике в школе. В нек-рых пед. ин-тах подготовка учителей ведётся по профилям: математика-физика, математика - программирование, математика - черчение. Сроки обучения на механико-математич. специальностях: 5-6 лет - в ун-тах, 4-5 лет -в пед. ин-тах. В 1974 подготовка специалистов с М.-м. о. велась по специальностям: математика (58 ун-тов-38,2 тыс. студентов, приём -8,8 тыс. чел., выпуск -5,6 тыс. чел., и ок. 200 пед. ин-тов -129,9 тыс. студентов, приём -27,1 тыс. чел., выпуск -23,3 тыс. чел.); механика (св. 20 ун-тов -4,3 тыс. студентов, приём - ок. 1 тыс. чел., выпуск -0,7 тыс. чел.); прикладная математика (св. 60 вузов различного профиля и ун-тов -23,9 тыс. студентов, приём -7,4 тыс. чел., выпуск -1,9 тыс. чел.). В вузах, н.-и. Ин-те математики и механики АН СССР, в академиях союзных республик, АПН СССР организована аспирантура для подготовки науч. кадров в области математики и механики.

Вспомогательное М.-м. о. имеет целью дать студентам (уч-ся) математич. сведения, необходимые для изучения спец. дисциплин и использования математич. средств при проведении различных исследований и в повседневной работе. К вспомогат. М.-м. о. относятся курсы математики и механики, к-рые читаются во втузах, на эко-номич., химич., биологич., геологич. и др. ф-тах (отделениях) ун-тов, отраслевых ин-тов и в средних спец. уч. заведениях. Для подготовки математиков с инженерным, экономич., физич. образованием (для к-рых математика является средством глубокого проникновения в закономерности производственных, инженерных, экономич. и др. процессов) созданы Московский инженерно-физический институт и Московский физико-технический институт; ряд инженерно-матема-тич. ф-тов во втузах, отделения математич. экономики и математич. лингвистики в Московском и Ленингр. ун-тах. В 50-60-е гг. в уч. планах втузов значительно увеличено количество часов на изучение математики; введены спец. математич. курсы; в программу общего курса включены теория вероятностей, математич. статистика, элементы программирования для ЭВМ, элементы линейного программирования и оптимального управления процессами. Во мн. втузах при дипломном и курсовом проектировании обязательно использование вычислит, техники. В 60-е гг. в крупнейших вузах страны организованы ф-ты повышения квалификации специалистов в области М.-м. о.

За рубежом подготовка математиков-исследователей, статистиков, вычислителей и программистов, преподавателей и др. осуществляется преим. в ун-тах В ряде стран Европы и в США организованы нац. комитеты по М.-м. о., к-рьи занимаются его совершенствованием При ЮНЕСКО работает Междунар. комиссия по М.-м. о., в деятельности к-рой участвуют сов. математики. Раз в 4 года проводятся междунар. конгрессы по математич. образованию. С 1970 в Великобритании издаётся междунар. журнал, посвящённый М.-м. о., в CCCР выпускаются спец. сборники по вопросам преподавания математики в вузах.

Лит.; Гнеденко Б. В., Очерки по исто рии математики в России, М.- Л., 1946 Ланков А.В.,К истории развития передовых идей в русской методике математики М., 1951; Прудников В. Е., Русские педагоги-математики XVIII-XIX веков, М., 1956; Колмогоров А. Н., О профессии математика, 3 изд., М., 1960; Вопросы истории физико-математических наук, М., 1963 разд. 1.

Б. В. Гнеденко

"МЕХАНИСТЫ", термин, обозначавший в сер. 20-х - нач. 30-х гг. 20 в. группу сов. философов, стоявших на позициях отождествления диалектики с совр. механикой и создавших своеобразную "механистическую" концепцию теории познания, логики и историч. материализма. Группа включала И. И. Скворцова-Степанова, А. К. Тимирязева, Л. И. Ак-сельрод-Ортодокс, В. М. Сарабьянова, В. А. Петрова и др. К "М." примыкал Н. И. Бухарин, претендуя на руководство "социологич. школой". Концепция "М." была своеобразным воспроизведением в марксистской философии ряда идей позитивизма, в т. ч. отрицания самостоят, значения философии, подмены диалектики теорией "равновесия", отрицания объективной природы случайности и т. д. Взгляды "М." были подвергнуты критике на ряде науч. конференций и диспутов. В 1929 Всесоюзная конференция марксистско-ленинских науч. уч реждении отметила, что механицизм является своеобразной ревизией диа-лектич. материализма (см. "Естествозна-; ние и марксизм", 1929, № 3, с. 211). В пост. ЦК ВКП(б) "О журнале „Под знаменем марксизма"" от 25 янв. 1931 механицизм охарактеризован как гл. опасность на теоретич. фронте тех лет.

В нач. 30-х гг. осн. представители этой группы отказались от своих ошибочных взглядов и подвергли их критике.

Лит.: О журнале "Под знаменем марксизма" [Из постановления ЦК ВКП(б)], в сб.: О партийной и советской печати, М., 1954; Нарский И. С., Суворов Л. Н., Позитивизм и механистическая ревизия, марксизма, М., 1962.

Л. Н. Суворов.

МЕХАНИЦИЗМ, односторонний метод познания и миропонимание, основывающиеся на представлении, будто механич. форма движения есть единственно объективная. Последоват. развитие этого взгляда приводит к отрицанию качеств, многообразия явлений в природе и обществе или к представлению о нём как лишь о субъективной иллюзии. В более широком смысле М. есть метод "сведения" сложных явлений к их более простым составляющим, метод разложения целого на части, неспецифичные для данного целого (на биологич. отношения, когда речь идёт о социальных явлениях, на физико-химические, когда речь идёт о биологии, и т. д.).

Исторически М. выступал в качестве господств, направления науч.-материа-листич. мысли на протяжении 16-18 вв., когда механика была единств, развитой наукой и получившей применение в произ-ве, и потому казалась "наукой вообще", абс. наукой, располагающей соответственно абс. методом - математикой, понимаемой в основном механистически. Классич. представителями М. могут считаться Г. Галилей, И. Ньютон, П. С. Лаплас (в естествознании), Т. Гоббс, Ж. Ламетри, П. Гольбах ( в философии). Типичными представителями М. в 19 в. являлись Л. Бюхнер, К. Фохт, Я. Молешотт, Е. Дюринг. Односторонне механистич. подход к познанию природных и обществ, явлений подвергался критике Б. Спинозой, Г. В. Лейбницем, отчасти Д. Дидро. Как ограниченно оправданный метод мышления, он был преодолен ("снят") Г. Гегелем (ему принадлежит и сам термин "М.") в диалектич. понимании задач и природы мышления. Критикуя М., Гегель одновременно отождествлял его недостатки с природой материализма вообще. Гегель "... хотел унизить материализм эпитетом „механический". Но дело в том, что критикуемый Гегелем материализм - французский материализм XVIII века - был действительно исключительно механическим..." (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 568-69).

М. есть пройденный историч. этап развития материалистич. философии, и всякая попытка возродить его в совр. условиях должна расцениваться как шаг назад в науч. отношении. Возможность рецидивов М. коренится в том, что любая, сколь угодно сложная и развитая форма движения материи заключает в своём составе механич. движение как одну из сторон. Поэтому с законами механики и могут быть согласованы не только различные, но и прямо противоположные процессы и явления. Как раз при таком "согласовании" совершается та нивелировка, в ходе к-рой подвергаются забвению их качеств, своеобразие и противоречивость. По отношению к любой форме движения, кроме чисто механической, М. приводит в конечном итоге к признанию принципиальной невозможности её познания. М. у Галилея, Гоббса, франц. материалистов ещё ни в малейшей степени не затронут агностицизмом. Но в 19 в. среди естествоиспытателей-механистов распространяются агностич. взгляды. В соответствии с принципом: что не механика, то не наука, всякое знание, раскрывающее природу надмеханич. областей движения, объявляется ненаучным. М. выдвигает понятие особых внешних "сил", в к-ром реальные моменты, абстрагированные от движения, превращаются в самостоятельно существующие механич. "причины" этого движения. "В механике причины движения принимают за нечто данное и интересуются не их происхождением, а только их действиями. Поэтому если ту или иную причину движения называют силой, то это нисколько не вредит механике как таковой; но благодаря этому привыкают переносить это обозначение также и в область физики, химии и биологии, и тогда неизбежна путаница" (там же, с. 407). Особенно наглядно несостоятельность М. проявляется в области проблем мышления, сознания, жизни. Здесь М. оказывается почвой для витализма, телеологии и идеализма.

М. как позиция в философии представляет собой типичное проявление метафи-зич. метода мышления, неспособного справиться с противоречием. Сталкиваясь с противоположными определениями предмета, М. всегда стремится зачеркнуть одно из них (напр., качество в угоду количеству) или же полагает только одно из них как истинное, в противоположность другому, принимаемому за неистинное: то абс. случайность, то столь же абс. необходимость, то дискретность, то непрерывность и т. д. М. мистифицирует и само понятие действующей причины, понимает движение не как самодвижение материи, а как результат действия внешней силы, поэтому и материя представляется ему инертной и косной массой.

Диалектич. материализм установил на основе обобщения данных науки, что механич. движение есть сторона, абстрактно-всеобщее условие всякого движения. В составе высших, надмеханич. процессов оно оказывается "побочной формой", необходимой, но далеко не достаточной для характеристики природы этих процессов.

Лит.: Энгельс Ф., Диалектика природы, Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; его же, Анти-Дюринг, там же; Гегель Г. В. Ф., Энциклопедия философских наук, ч. 1, Логика, Соч., т. 1, М.-Л., 1929; его же, Наука логики, там же, т. 5-6, М., 1937 - 39; С а м у с к е-вич А. В., Некоторые философские вопросы атомистики и борьба против механицизма в современной физике, в сб.: Научные труды по философии [Белорус, ун-та], в. 1, Минск, 1956; Вислобоков А. Д., Марксистская диалектика и современный механицизм, М., 1962.

А. В. Потёмкин.

МЕХАНИЧЕСКАЯ ЗАПИСЬ звука, система записи звука посредством изменения формы носителя при механич. воздействии на него. М. з. является первой практич. системой звукозаписи. Ещё в нач. 19 в. при исследовании звуковых сигналов физики стали записывать колебания нек-рых источников звука. Эти записи предназначались только для визуального изучения и не могли быть воспроизведены. В 1877 французский учёный Ш. Кро впервые научно обосновал принципы записи звука на барабан (или диск) и её последующего воспроизведения. Первым аппаратом механич. записи и воспроизведения звука был фонограф (заявка на изобретение 1877) амер. изобретателя Т. Эдисона. Его фонограф с восковым валиком не получил широкого распространения ввиду сложности копирования записи, быстрого изнашивания валиков и плохого качества воспроизведения. В 1888 немецкий инженер Э. Берлинер предложил использовать для записи носитель в форме диска. После записи с диска гальваническим способом получали матрицы, к-рые использовались для прессования граммофонных пластинок. До 50-х гг. 20 в. М. з. была монофонической (см. Монофоническая звукозапись). В дальнейшем получила распространение также стерео-фонич. М. з., обеспечивающая лучшее качество звучания (см. Стереофоническая звукозапись). В нач. 70-х гг. 20 в. предложена квадрофонич. М. з., в к-рой звуковые сигналы, передаваемые по 4 независимым каналам, записываются в одной канавке диска. Такая запись воспроизводится 4 громкоговорителями, располагаемыми по углам комнаты.

Станок для механической звукозаписи: 1 - микроскоп для контроля качества записи; 2-трубка для отсоса воздуха из-под лакового диска с целью прижима его к планшайбе; 3 - вращающаяся планшайба со стробоскопическими метками по окружности, по которым контролируется скорость вращения; 4 - каретка, обеспечивающая передвижение рекордера 5 при записи.

Процесс М. з. делится на 3 этапа: перезапись с магнитной ленты на лаковый диск, изготовление матриц и прессование грампластинок. Установка для перезаписи на лаковый диск состоит из магнитофона, электронного устройства для усиления и коррекции электрич. сигналов и станка записи (рис.), имеющего движущий механизм, рекордер и устройство управления. Преобразование электрич. сигналов в механич. колебания осуществляется рекордером, резец к-рого вырезает на лаковом диске канавку, модулированную звуковым сигналом. Стереофонич. рекордер имеет две (по числу каналов) независимые динамич. системы, связанные с одним резцом. Сигналы каждого канала раздельно записываются на левую и правую стенки канавки. Для получения металлич. оригиналов и матриц, с к-рых затем будут изготавливаться грампластинки, запись с лакового диска переносится гальванопластич. способом на металлические диски. Для этого лаковый диск сначала покрывают тонким слоем серебра, а затем - никелевой плёнкой, на к-рую наращивают слой меди. После отделения лакового диска получают первый оригинал. Аналогичным образом получают вторые оригиналы, с к-рых изготавливают никелевые матрицы. Эти матрицы прикрепляются к подогреваемым пресс-формам. Прессование грампластинок из синтетич. материалов производится гидравлич. прессами.

Для воспроизведения М. з. служат электропроигрыватели. Преимущества М. з.- массовое тиражирование грампластинок, их относительная дешевизна и простота обращения, а также возможность надёжного хранения записи длит, время в металлич. оригиналах (матрицах), осн. недостатки - сравнительно быстрый износ грампластинки из-за непосредств. механич. контакта граммофонной иглы с ней, невозможность монтажа и стирания записи.

Лит.: Калашников Л. А., Очерк развития техники механической записи звука, "Тр. Ин-та истории естествознания и техники", 1959, т. 26; Аполлонова Л. П