загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

резки позволяет применять её в поточных непрерывных производств. процессах. Мощность установок достигает 150 квт. Неэлектропроводные материалы (бетоны, гранит, тонколистовые органич. материалы) обрабатывают плазменной струёй (дуга горит в сопле плазменной горелки между её электродами). Нанесение покрытий (напыление) производится для защиты деталей, работающих при высоких темп-pax, в агрессивных средах или подверженных интенсивному механич. воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка или проволоки в плазменную струю, в к-рой он плавится, распыляется, приобретает скорость ~ 100-200 м/сек и в виде мелких частиц (20-100 мкм) наносится на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термич. ударам. Мощность установок для напыления 5-30 квт, макс. производительность 5-10 кг напыленного материала в час. Для получения порошков со сферич. формой частиц, применяемых в порошковой металлургии, в плазменную струю вводят материал, частицы к-рого, расплавляясь, приобретают под действием сил поверхностного натяжения сферич. форму. Размер частиц может регулироваться в пределах от неск. мкм до 1 мм. Более мелкие (ультрадисперсные) порошки с размерами частиц 10 нм и выше получают испарением исходного материала в плазме и последующей его конденсацией.

Свойство плазменной дуги глубоко проникать в металл используется для сварки металлов. Благоприятная форма образовавшейся ванны позволяет сваривать достаточно толстый металл (10-15 мм) без спец. разделки кромок. Сварка плазменной дугой отличается высокой производительностью и, вследствие большой стабильности горения дуги, хорошим качеством. Маломощная плазменная дуга на токах 0,1-40 а удобна для сварки тонких листов (0,05 мм) при изготовлении мембран, сильфонов, теплообменников из Та, Ti, Mo, W, al.

Лит. см. при ст. Плазматрон.

В. В. Кудинов.

ПЛАЗМЕННАЯ ПЕЧЬ, электрическая печь для нагрева, плавки и металлургия. переработки металлов и сплавов, в к-рой источником тепла служит плазма, получаемая с помощью плазматронов. Различают плазменнодуговые (ПДП) и плазменные высокочастотные (ПВП) печи.

Известны 2 осн. типа ПДП: подовые (или тигельные) печи периодич. действия и печи с кристаллизатором полунепрерывного действия. Подовая ПДП (рис. 1) по форме ванны и футеровочным материалам не отличается от обычной дуговой печи того же назначения. Для отбора проб по ходу плавки, замера темп-ры металла, присадки легирующих добавок, раскислителей и шлакообразующих материалов в своде или корпусе печи имеется одно или неск. отверстий с водоохлаждаемыми крышками. Уплотнение технологич. отверстий обеспечивает поддержание в печи избыточного давления плазмообразующего газа. В ПДП катодом дугового разряда постоянного тока служат катоды одного или неск. плазматронов (чаще всего из вольфрама или спец. тугоплавкого сплава), а анодом - обрабатываемый металл в ванне печи. Ток, проходящий через металл, отводится установленным в подине печи т. н. подовым электродом (как правило, водоохлаждаемым). Дуга в ПДП обдувается прямым или завихрённым потоком инертного газа (обычно аргона); это, во-первых, стабилизирует дугу и повышает её темп-ру до 10 000-20 000 К и, во-вторых, создаёт над выплавляемым металлом (сплавом) нейтральную атмосферу. ПДП применяют для произ-ва особо ответств. сталей и спец. сплавов (см. Плазменная металлургия ).


Рис. 1. Подовая плазменнодуговая печь: 1- плазматрон; 2- электрод; 3 - отверстие с крышкой.

В ПДП с кристаллизатором переплавляемые заготовки по схеме Ин-та электросварки АН УССР располагаются вертикально (рис. 2, я), а по схеме Ин-та металлургии АН СССР - горизонтально (рис. 2, б) с подключением к ним в случае надобности дополнит. питания переменным током. Возможна подача вместо компактных заготовок мелкофракционного материала. В камере печи поддерживается избыточное давление (обычно небольшое, но возможно его повышение до неск. десятков атм). Процессом кристаллизации слитка в ПДП можно управлять в более широких пределах по сравнению с вакуумной дуговой и электрошлаковой печами благодаря раздельному регулированию скорости плавления и мощности теплового потока дуги.

Для плавки газонасыщенных материалов, обеспечивающей их дегазацию, применяют ПДП низкого давления (103- 0,10 н/м2, или 10-2-10-6 кгс/см2); они используются вместо более дорогих и сложных электроннолучевых печей.

В ПВП (рис. 3) плазма вследствие особенностей устройства плазматрона не содержит частиц вещества электродов и является более чистой; поэтому печи такого типа чаще применяют для выращивания монокристаллов и переработки чистых веществ.


Рис. 2. Плазменнодуговые печи с кристаллизатором: а-вертикальное расположение заготовок, б - горизонтальное; 1 - плазматрон; 2 - переплавляемый металл.


Рис. 3. Высокочая стотная плазменная печь: 1 - запальный электрод; 2- подача газопорошковой смеси; 3 - герметичная камера; 4 - плазма; 5 - индуктор; 6 - выращиваемый кристалл.

Лит. см. при ст. Плазменная металлургия. А. Г. Фридман.

ПЛАЗМЕННОЕ БУРЕНИЕ, способ бурения с применением в качестве рабочего органа плазматрона спец. конструкции (плазмобура). значит. распространение получили плазмобуры с воздушно-вихревой стабилизацией ("закруткой") электрич. дугового разряда, служащего источником плазмы. Темп-pa плазменной струи при П. б. достигает 5000 К, что обеспечивает разрушение горных пород на забое скважины. Плазмообразующими веществами в плазмобурах служат воздух, инертные газы, водяной пар и их смеси. Осевое расположение дуги в плазмобуре позволяет при небольшом наружном диаметре получать высокие мощности. Принцип работы простейшего воздушного плазмобура (рис.) состоит в следующем. Сжатый воздух подаётся через пустотелую буровую штангу в плазмобур, где разделяется на два потока; один из них поступает на внутр. электрод через спиральный канал-завихритель, питает разряд и, обдувая дугу, вынуждает её вращаться. Вращение смещает электродные пятна дуги по поверхности внутри электрода и тем самым предотвращает его преждевременное сгорание. Второй поток охлаждает оба электрода, омывая их теплоотдающие рёбра. Часть второго потока через тангенциальные отверстия в изолирующей втулке поступает внутрь разрядной камеры; образовавшаяся плазма истекает через сопло или неск. сопел на забой. Большая же часть второго потока после охлаждения электродов выбрасывается наружу через отверстия в крышке плазмобура и выносит продукты разрушения из скважины. Распространены и др. схемы плазмобуров, в частности коаксиально-вихревая с водяным охлаждением электродов. В плазмобурах в качестве рабочего тела может применяться воздушно-водяная смесь или пар. Это снижает (или практически совсем устраняет) токсичность отходящих газов (что особенно важно при П. б. в подземных условиях), а также увеличивает удельный тепловой поток плазмобура.


Плазмобур с воздушным охлаждением: 1 - выходной электрод; 2 - внутренний электрод; 3 - завихритель; 4 - шток; 5 - буровая штанга; 6 - корпус; 7 - дуга.

П. б. наиболее эффективно в крепких горных породах (гранитах, кварцитах, порфиритах и т. п.). Скорость бурения прямо пропорциональна удельной мощности плазмобура. Для плазмобура с воздушно-вихревой стабилизацией дуги и воздушным охлаждением скорость бурения в гранодиоритах достигала 4,5 м/ч при диаметре скважин до 130 мм и мощности до 100 квт; для коаксиально-вихревого плазмобура с введением в плазму углеводородного горючего скорость бурения железистых кварцитов Криворожского басс. достигала 10-25 м/ч (в пересчёте на шпур диаметром 50 мм) при мощности плазмобура 81-150 квт.

П. б. применяется для проходки шпуров и скважин, их расширения, дробления негабаритов, добычи и обработки штучного камня, резания и обработки бетонов.

Лит.: Физика, техника и применение низкотемпературной плазмы. Тр. IV Всесоюзной конференции по физике и генераторам низкотемпературной плазмы, a.-a., 1970; Бергман Э. Д., Покровский Г. Н., Термическое разрушение горных пород плазмобурами, Новосиб., 1971. Э. Д. Бергман.

ПЛАЗМЕННЫЕ ДВИГАТЕЛИ, ракетные двигатели, в к-рых рабочее тело ускоряется, находясь в состоянии плазмы. Скорости истечения рабочего тела, достижимые в П. д., существенно выше скоростей, предельных для обычных газодинамич. (химич. или тепловых) двигателей. Увеличение скорости истечения позволяет получать данную тягу при меньшем расходе рабочего тела, что облегчает массу ракетной системы (см. Циолковского формула).

В наст. время (1975) практич. применение на сов. и амер. космических летательных аппаратах нашли плазменные электрореактивные двигатели. В таких П. д. через рабочее тело пропускается электрич. ток от бортового источника энергии, в результате чего образуется плазма с темп-рой в десятки тыс. градусов. Эта плазма затем ускоряется либо газодинамически, либо за счёт силы Ампера, возникающей при взаимодействии тока с магнитными полями (см. Ампера закон, Лоренца сила, Магнитная гидродинамика).

Исследуются возможности создания П. д. на др. принципах. Так, существуют модели П. д., в к-рых действующей силой является реактивная сила отдачи, возникающая при разлёте продуктов разложения и испарения поверхностей твёрдых тел, облучаемых мощными импульсами лазерного излучения или импульсными электронными пучками. Обсуждается также схема ядерного ракетного двигателя на основе ядерного реактора с газофазными (точнее, плазменными) тепловыделяющими элементами. В этом реакторе делящееся вещество должно находиться в состоянии плазмы с темп-рой в неск. десятков тыс. градусов. При контакте с ним рабочее тело (напр., водород) будет нагреваться до соответствующих температур, что позволит получить скорости истечения в неск. десятков км/сек.

Лит.: Гильзин К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Плазменные ускорители, под ред. Л. А. Арцимовича [и др.], М., 1973. А. И. Морозов.

ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, преобразователи тепловой энергии плазмы в электрич. энергию. Существует 2 типа П. и. э. э.- магнитогидродинамический генератор и термоэлектронный преобразователь.

ПЛАЗМЕННЫЕ УСКОРИТЕЛИ, устройства для получения потоков плазмы со скоростями 10-103 км/сек и более, что соответствует кинетич. энергии ионов от ~10 эв до 105-106 эв. На нижнем пределе энергии П. у. соседствуют с генераторами низкотемпературной плазмы- плазматронами, на верхнем - с коллективными ускорителями заряженных частиц (см. Ускорения заряженных частиц коллективные методы). Как правило, П. у. являются ускорителями полностью ионизованной плазмы, поэтому процессы возбуждения и ионизации, а также тепловые процессы играют в них, в отличие от плазматронов, вспомогат. роль.

Плазменные потоки с большими скоростями можно получить разными способами, напр. воздействием лазерного луча на твёрдое тело. Однако к собственно П. у. относят лишь устройства (рис. 1), в к-рых ускорение и обычно одновременное приготовление плазмы осуществляются за счёт электрич. энергии с помощью одного или неск. специальных электрич. разрядов.

В отличие от ускорителей заряженных частиц, в канале П. у. находятся одновременно частицы с зарядами обоих знаков - положит. ионы и электроны, т. е. не происходит нарушения квазинейтральности. Это снимает ограничения, связанные с объёмным (пространственным) зарядом (см. Ленгмюра формула), и позволяет получать плазменные потоки с эффективным током ионов в неск. млн. а при энергии частиц ~ 100 эв. При ионных токах ~ 1000 а уже достигнута энергия частиц в неск. кэв.


Рис. 1. Принципиальная схема плазменного ускорителя.

Из П. у. ионы и электроны выходят практически с равными направленными скоростями, так что осн. энергия потока приходится на ионы (вследствие их большой массы). Поэтому П. у.- это электрич. системы, ускоряющие ионы в присутствии электронов, компенсирующих объёмный заряд ионов.

Механизм ускорения. При анализе рабочего процесса в П. у. плазму можно рассматривать и как сплошную среду, и как совокупность частиц (ионов и электронов). В рамках первого подхода ускорение плазмы обусловлено перепадом полного (ионного и электронного) давления p = pi + pe и действием силы Ампера FАмп (см. Ампера закон), возникающей при взаимодействии токов, текущих в плазме, с магнитным полем, FАмп~[jB], где j - плотность тока в плазме, В - индукция магнитного поля.

В рамках второго подхода ускорение ионов может происходить в результате: 1) действия электрич. поля Е, существующего в плазменном объёме; 2) столкновений направленного потока электронов с ионами ("электронного ветра"); 3) столкновений ионов с ионами, благодаря к-рым энергия хаотич. движения ионов переходит в направленную (тепловое или газодинамич. ускорение ионов). Наибольшее значение для П. у. имеет электрич. ускорение ионов, меньшее - два последних механизма.

Классификация плазменных ускорителей. П. у. делятся на тепловые и электромагнитные в зависимости от того, преобладает ли в процессе ускорения перепад полного давления p или сила Ампера.

Среди тепловых П. у. осн. интерес представляют неизотермические ускорители, в к-рых pe >>pi. Это объясняется тем, что обычно трудно создать плазму с высокой темп-рой ионов Ti и сравнительно просто - с "горячими" электронами (Te>>Ti Такая плазма является неизотермической. Конструктивно неизотермич. ускоритель представляет собой "магнитное сопло" (рис. 2), в к-ром либо путём инжекции быстрых электронов, либо путём электронного циклотронного резонанса создают плазму с "горячими" электронами, Te~107-109 К, или в энергетич. единицах: kTe~103-105 эв (где k - Болъцмана постоянная). Электроны, стремясь покинуть камеру, создают электрич. поле объёмных зарядов, к-рое

Рис. 2. Схема неизотермического плазменного ускорителя. Электронный пучок, выходящий из электронной пушки ЭП, нагревает электроны в газоразрядной камере ГК и ионизует рабочее вещество РВ, подаваемое в камеру. Образующаяся ускоренная плазма УП под действием перепада электронного давления вытекает вдоль магнитных силовых линий, создаваемых катушками магнитного поля КМП. "вытягивает" (ускоряет) ионы, сообщая им энергию порядка kTe.

[1944-44.jpg]

Электромагнитные П. у. подразделяются по характеру подвода энергии к плазме. Различают три класса: а) радиационные ускорители, в к-рых ускорение плазменного потока происходит за счёт давления электромагнитной волны, падающей на плазменный сгусток (рис. 3, а); 6) индукционные ускорители - импульсные системы, в к-рых внешнее нарастающее магнитное поле В индуцирует ток j в плазменном кольце (рис. 3, 6), созданном тем или иным способом. Взаимодействие этого тока с радиальной составляющей внешнего магнитного поля создаёт силу Ампера, к-рая и ускоряет плазменное кольцо; в) электродные плазменные ускорители, в к-рых существует непосредственный контакт ускоряемой плазмы с электродами, подключёнными к источнику напряжения. При амперовом взаимодействии этого тока с внешним (т. е. созданным автономными магнитными системами) или собственным (созданным током, протекающим через плазму) магнитным полем происходит ускорение плазмы. Наиболее изученными и многочисленными являются электродные П. у., к-рые ниже будут рассмотрены подробнее.



Рис. 3. а-схема радиационного плазменного ускорителя: КМП - катушки магнитного поля; В.- волновод; Пи - плазменный сгусток; ЭВ - электромагнитная волна; б - схема индукционного плазменного ускорителя: В - магнитное поле; ПК - плазменное кольцо; ИК - индукционная катушка; j - ток в плазменном кольце.


А. Плазменные ускорители с собственным магнитным полем

Импульсные электродные ускорители (пушки). Первым П. у. был "рельсотрон" (рис. 4, а), питаемый конденсаторной батареей. Плазменный сгусток создаётся при пропускании большого тока через тонкую проволоку, натянутую между рельсами, которая при этом испаряется и ионизуется, или за счёт ионизации газа, впрыскиваемого в межэлектродный промежуток через спец. клапан. При разряде на ток в плазменной перемычке (достигающий десятков и сотен ка) действует собств. магнитное поле электрич. контура, в результате чего за время порядка 1 мксек и происходит ускорение сгустка. Позднее импульсным ускорителям был придан вид коаксиальной системы (рис. 4, б). В этом случае ускорение сгустка плазмы происходит под действием силы Ампера FАмп, возникающей при взаимодействии радиальной составляющей тока jr с азимутальным собств. магнитным полем Нф. Такие П. у. уже нашли широкое применение и позволяют получать сгустки со скоростями до 108 см/сек и общим числом частиц до 1018.


Рис. 4. а- схема "рельсотрона": npельсы; П - плазменная перемычка; С - ёмкость; К - ключ; 6 - схема коаксиального импульсного плазменного ускорителя. Быстродействующий клапан БК подаёт газ в зазор между внутренним ВЭ и наружным НЭ электродами (ДВ - диэлектрическая вставка между электродами ). После замыкания ключа К в цепи возникает ток. который ионизует газ.

Стационарные сильноточные торцевые ускорители. В принципе коаксиальный ускоритель можно сделать стационарным (работающим в непрерывном режиме), если непрерывно подавать в зазор между электродами рабочее вещество (ионизуемый газ). Однако вследствие Холла эффекта при стационарном разряде в ускорителе электрич. ток имеет значит. продольную составляющую. Благодаря этому происходит "отжатие" плазмы к катоду, образование прианодных скачков потенциала и т. п., что ведёт к резкому уменьшению кпд. В связи с этим более эффективной оказывается "торцевая" схема (рис. 5, а) с коротким катодом, через к-рый одновременно подаётся рабочее вещество. Ускорение плазмы в торцевом П. у. происходит также в основном за счёт силы Ампера, возникающей при взаимодействии радиальной составляющей jrтока j с азимутальным магнитным полем Нф. Если при постоянной подаче рабочего вещества непрерывно увеличивать разрядный ток Ip, то сначала скорость истечения плазмы и кпд ускорителя будут расти. Однако при нек-ром значении Ip происходит вынос большой части разрядного тока за срез ускорителя, резко возрастает напряжение и падает кпд, в ускорителе возникают колебания. Наступает т. н. критич. режим. Его физич. причиной является, по-видимому, пинч-эффект, в результате к-рого плазменный шнур отрывается от анода.

На нормально работающих торцевых ускорителях с собств. магнитным полем при разрядных токах ок. 104 а удаётся получать стационарные потоки плазмы со скоростями ~ 100 км/сек и характерными расходами рабочего вещества ~0,01-0,1 г/сек. При этом напряжение на разряде составляет ок. 50 в.

Описанный торцевой ускоритель становится неработоспособным не только при больших, но и при малых разрядных токах Iр, поскольку сила Ампера пропорциональна Pp. Поэтому при Iр<1000 а роль силы Ампера в реальных условиях становится меньше, чем газокинетич. давление, и торцевой П. у. превращается в обычный плазматрон. Чтобы увеличить эффективность торцевого ускорителя при малых мощностях, в рабочем канале создают внешнее магнитное поле (рис. 5, б). Получающийся ускоритель наз. торцевым холловским ускорителем, или магнито-плазменным ускорителем. Он позволяет получать потоки плазмы со скоростями в десятки км/сек при мощности >=10 квт. Замечат. особенность торцевых ускорителей - способность создавать потоки частиц с энергией, в неск. раз превосходящей приложенную разность потенциалов. На языке динамики частиц это объясняется увлечением ионов за счёт столкновений с электронным потоком, идущим из катода ("электронным ветром").

Рис. 5. а - схема торцевого плазменного ускорителя: ДВ-диэлектрическая вставка; 6 - схема торцевого магнито-плазменного ускорителя: ДВ - диэлектрическая вставка; КМП - катушка магнитного поля; РВ -рабочее вещество.

Б. Плазменные ускорители с внешним магнитным полем

Если требуется получать стационарные потоки малой мощности (~<10 квт) или потоки частиц с большими скоростями (~>108 см/сек), особенно удобными оказываются т. н. "П. у. с замкнутым дрейфом", один из видов которых схематически изображён на рис. 6. Это осесимметричная система с радиальным магнитным полем в кольцевом ускорительном канале, в к-ром находится плазма. Работу данного П. у. проще понять, рассматривая динамику электронов и ионов.

Если между анодом и катодом приложить разность потенциалов, то электроны начнут дрейфовать (т. е. двигаться в среднем с постоянной скоростью) перпендикулярно электрическому Е и магнитному Н полям, описывая кривые, близкие к циклоиде. Длина ускорительного канала L выбирается так, чтобы высота электронной циклоиды heбыла много меньше L (L>>he). В этом случае говорят, что электроны "замагничены". Высота ионной циклоиды h1в силу большой массы (M1) иона в M1/meраз превосходит he (тe - масса электрона). Поэтому, если сделать длину канала L много меньше h1, то ионы будут слабо отклоняться магнитным полем и под действием электрик, поля будут ускоряться практически по прямой линии. Энергия, набираемая ионами в таком ускорителе, близка к разности потенциалов, приложенной между анодом и катодом, умноженной на заряд иона, а разрядный ток близок к току ускоренных ионов. В целом рабочий процесс в описываемом П. у. происходит след. образом. Рабочее вещество в виде газа или пара поступает через анод в кольцевой ускорительный канал УК (рис. 6). Здесь, попав в облако дрейфующих по азимуту электронов (под действием взаимно перпендикулярных магнитного n и электрического е полей), нейтральный атом ионизуется. Возникший в процессе ионизации электрон за счёт столкновений с ионами, атомами, стенкой диэлектрич. камеры ДК и под влиянием колебаний диффундирует на анод, а ион, ускоренный электрич. полем, покидает канал. Поскольку объёмный заряд ионов, находящихся в канале, всё время компенсирован зарядом дрейфующих электронов, здесь (в отличие от ионных источников) нет ограничений на величину "вытягиваемого" ионного тока. После выхода из канала ион (чтобы не возникло нарушение квазинейтральности) получает электрон от катодакомпенсатора КК. Существует ряд модификаций П. у. с замкнутым дрейфом (с анодным слоем, однолинзовые, многолинзовые и т. п.). Эти ускорители позволяют получать плазменные потоки с эффективным током ионов от единиц до многих сотен а с энергией от 100 эв до 10 кэв и более.

Рис. 6. Схема плазменного ускорителя с замкнутым дрейфом. Магнитное поле Н создаётся магнитопроводом МПр и катушками КМП.

Применения плазменных ускорителей. Первые П. у. появились в сер. 1950-х гг. и уже нашли применение как электрореактивные двигатели, в технологии для чистки поверхностей (методом катодного распыления), нанесения металлич. плёнок на различные поверхности, в исследованиях по ионосферной аэродинамике и экспериментальной астрофизике (моделирование космич. явлений), в термоядерных исследованиях (в качестве инжекторов плазмы), плазмохимии и т. д. По мере совершенствования конструкции и достижения новых параметров область применения П. у. будет непрерывно расширяться.

Лит.: Плазменные ускорители, под ред. Л. А. Арцимовича [и др.], М., 1973.

А. И. Морозов.

ПЛАЗМЕННЫЙ ГЕНЕРАТОР, то же, что плазматрон.

ПЛАЗМЕННЫЙ РЕАКТОР, узел плазмохимич. или плазменного металлургич. агрегата, в к-ром осуществляются процессы тепло- и массообмена и хим. реакции с участием низкотемпературной плазмы (см. Плазменная металлургия, Плаэмохимия). П. р. наз. не только отд. узлы, но и плазменные агрегаты в целом. Осн. требования к П. р.: получение достаточно полного смешения реагентов; обеспечение требуемой протяжённости зоны взаимодействия; создание условий эффективного тепло- и массообмена при минимальных теплопотерях. Если для генерации плазмы применяются высокочастотные индукционные плазматроны, то возможно совмещение реакционной зоны с объёмом разряда (П. р. так наз. открытого типа). Струйные П. р., в к-рых плазму получают в виде сформированной струи, подразделяются на прямоточные и со встречными струями (рис.). Увеличение времени контакта реагирующих веществ и интенсификация тепло- и массообмена по сравнению с простейшими струйными прямоточными П. р. достигается в П. р., работающих по схеме встречных струй, в П. р. открытого типа, в П. р. так наз. циклонного типа, а также при наложении на объёмный высокочастотный разряд постоянных электрич. и (или) магнитного поля.

Схемы плазмохимических агрегатов со струйным реактором: а - прямоточного типа; б - со встречными струями; 1 - плазматрон; 2 - узел подачи сырья; 3 - плазменный реактор; 4 - закалочный агент; 5 - узел улавливания и обработки продуктов.

Для создания равномерного температурного поля плазменного потока, повышения его мощности, улучшения смешения реагентов и интенсификации тепло- и массообмена перспективны многодуговые П. р.

Лит.: Моссэ А. Л., Печковский В. В., Применение низкотемпературной плазмы в технологии неорганических веществ. Минск, 1973. Ю. В. Цветков.

ПЛАЗМИДЫ, факторы наследственности, расположенные в клетках вне хромосом. К П. относят генетич. факторы клеточных органелл (митохондрий, пластид и др.) и генетич. факторы, не являющиеся обязательными компонентами клеток. Из последних более изучены т. н. каппа-фактор у парамеций, продуцирующих антибиотич. вещество парамеции, фактор чувствительности к СО2 и агент, обусловливающий бессамцовость у дрозофил, а также ряд бактериальных П. У бактерий П. могут контролировать устойчивость к лекарственным веществам, синтез бактерицинов, энтеротоксина, гемолизина и нек-рых антигенов. П., наз. половыми факторами, определяют половую дифференциацию у бактерий. Показано, что мн. П. состоят из кольцевых молекул двухнитевой ДНК с мол. массой 106-108 дальтон. См. также Наследственность цитоплазматическая, Эписомы. В. Г. Лиходед.

ПЛАЗМОДЕСМЫ (от греч. plasma - вылепленное, оформленное и desmos - связь), цитоплазматич. нити, соединяющие соседние растит. клетки. Посредством П. осуществляется связь между протопластами. Поперечник П. от 180 до 680 А (чаще 300-400 А); число П. в разных клетках варьирует. Располагаются П. в канальцах, проходящих через первичную клеточную оболочку по первичным поровым полям; в клетках с вторичной оболочкой они находятся лишь в замыкающих плёнках пор. Полость канальцев выстлана наружной мембраной П.- плазмалеммой. П. обеспечивают передачу раздражений и передвижение веществ от клетки к клетке. См. Десмосомы.

ПЛАЗМОДИИ (Plasmodium), род паразитич. простейших отряда гемоспоридий. Св. 60 видов, паразитирующих у позвоночных животных и человека и вызывающих у них малярию. Переносчиками П. служат насекомые, гл. обр. малярийные комары из сем. Culicidae. В организм позвоночного со слюной комара попадают особи П. в виде веретеновидных телец - спорозоитов, внедряющихся в эндотелий кровеносных сосудов или в клетки печени; там они размножаются бесполым путём (см. Шизогония), давая множество мерозоитов - мелких одноядерных клеток. Мерозоиты либо повторяют цикл бесполого размножения в ткани, либо выходят в кровь и проникают в эритроциты, где претерпевают серию шизогонии, в результате чего резко увеличивается количество паразитов в крови. Выход мерозоитов из разрушающихся эритроцитов сопровождается попаданием в плазму крови вредных продуктов жизнедеятельности паразита. На определённом этапе жизненного цикла часть образовавшихся в эритроцитах мерозоитов, внедрившись в новые эритроциты, превращается в жен. (макро-) и муж. (микро-) гаметоциты. Макрогаметоциты в организме позвоночного превращаются в макрогаметы, развитие же микрогаметоцитов возможно лишь в организме комара. После попадания П. вместе с кровью позвоночного животного в желудок комара каждый микрогаметоцит даёт начало неск. жгутовидным микрогаметам, к-рые сливаются (копулируют) попарно с макрогаметами, образуя подвижные зиготы - оокинеты. Проникнув активно через эпителий желудка комара, оокинеты под его мышечным слоем окружаются плотными оболочками, превращаясь в ооцисты (зигоцисты). После многократного деления ядра ооцисты её содержимое распадается на множество (до 10 тыс.) мелких одноядерных спорозоитов; оболочка ооцисты разрывается, и спорозоиты выходят в полость тела насекомого. Активно перемещаясь в гемолимфе, спорозоиты попадают в слюнные железы комара, откуда при кровососании снова попадают в организм хозяина. У человека паразитируют 4 вида П.- Plasmodium vivax (возбудитель трёхдневной малярии), P. malariae (четырёхдневной), P. falciparum (тропической) и P. ovale; переносчиками этих видов П. служат комары рода Anopheles. У приматов паразитируют P. reichenowi, P. knowlesi и др., у грызунов - P. berghei, у птиц - P. relictum, P. gallinaceum, P. durum, P. lophurum, P. catemerium и др., у пресмыкающихся - P. agamae, P. lacertiliae и др., у земноводных - Р. bufonis и P. catesbiana. о. И. Чибисова


Цикл развития Plasmodium vivax: 1 - спорозоиты; 2-4-шизогония в клетках печени; 5 -10 - шизогония в эритроцитах; 11 - макрогаметоцит; 11а - молодоЙ микрогаметоцит; 12, 13 - макрогамета; 12а, 14 - зрелый микрогаметоцит; 15 - образование микрогаметы; 16 - слияние макро- и микрогаметы; 17,18 - оокинета; 19 - проникновение оокинеты через стенку кишечника комара; 20 - ооциста; 21 -24 - образование в ооцисте спорозоитов; 25 - спорозоиты в слюнной железе комара.

ПЛАЗМОДИЙ (от греч. plasma - вылепленное, оформленное), бесцветное или яркоокрашенное вегетативное тело грибов миксомицетов, состоящее из многоядерной протоплазмы, лишённой оболочки. Величина П. колеблется от неск. мм2 до 1, а иногда и 1,5 м2. Различают протоплазмодий - в виде микроскопич. недифференцированной протоплазмы (Echinostelium minutum), афаноплазмодий - сеть недифференцированных тяжей незернистой протоплазмы (виды Stemonites) и фанероплазмодий - хорошо дифференцированную протоплазму, состоящую из тяжей и лопастей с ярко выраженным зернистым содержимым (виды Physarum). Для П. характерно внутр. движение токов протоплазмы, способных менять направление движения. П. питается сапрофитно, поглощая питат. вещества всей поверхностью; передвигается с помощью выростов протоплазмы - псевдоподиев. Обитает в темноте под корой деревьев, внутри гнилой и влажной древесины, под опавшей листвой. Ко времени образования спор П. выползает на поверхность субстрата и целиком преобразуется в орган спороношения, имеющий в зависимости от вида гриба самую разнообразную форму и окраску. У плазмодиофоровых грибов П. (т. н. эндоплазмодий) паразитирует в тканях водорослей, грибов и высших растений, вызывая у последних болезни, напр. килу капусты и др. крестоцветных. В. А. Мельник.

ПЛАЗМОЗАМЕЩАЮЩИЕ РАСТВОРЫ, лечебные препараты, к-рые при внутривенном введении оказывают такой же механич. и онкотический эффект, как и вливание цельной крови или плазмы, но не обладают свёртывающей и иммунной способностью плазмы. Подробнее см. в ст. Кровезаменители.

ПЛАЗМОЛИЗ (от греч. plasma - вылепленное, оформленное и lysis - разложение, распад), отставание протопласта от оболочки при погружении клетки в гипертонический раствор. П. характерен гл. обр. для растит. клеток, имеющих прочную целлюлозную оболочку. Животные клетки при перенесении в гипертонич. раствор сжимаются. В зависимости от вязкости протоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а следовательно от скорости и степени потери воды протоплазмой, различают П. выпуклый, вогнутый, судорожный и колпачковый. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз. Для сравнит. оценки П. в тканях существует 2 метода: пограничного П. и плазмометрический. Первый метод, разработанный X. Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией KNО3, сахарозы или др. осмотически активного вещества и установлении той концентрации, при к-рой плазмолизируется 50% клеток. При плазмометрич. методе после П. измеряют относит, объём клетки и протопласта и по концентрации раствора вычисляют осмотич. давление клетки (по соответствующим формулам).

В. В. Кабанов.

ПЛАЗМОН, квант колебаний плотности плазмы и плазмы твёрдого тела, сопровождающихся продольными колебаниями электрич. поля. П. является квазичастицей. Энергия Е П. приблизительно равна:
[1944-51.jpg]

где
[1944-52.jpg]

- угловая плазменная (ленгмюровская)частота,
[1944-53.jpg]

- Планка постоянная, n - число заряженных частиц в единице объёма, е и т - заряд и масса частиц. Энергия П. измеряется по характеристич. потерям энергии электронами в металлах (пролетающие через пластину электроны расходуют энергию на возбуждение плазменных колебаний, т. е. на "рождение" П.), а также при анализе спектра светового излучения, испускаемого П.

ПЛАКСИН Игорь Николаевич [25.9 (8.10).1900, Уфа,- 15.3.1967, Москва], советский учёный в области металлургии и горного дела, чл.-корр. АН СССР (1946). Чл. КПСС с 1945. После окончания Дальневосточного ун-та (1926) работал в лаборатории Н. С. Курнакова в Химическом институте АН СССР (Ленинград), в 1928-30 - в Моск. горной академии, с 1930 - в Московском институте цветных металлов и золота (зав. кафедрой металлургии благородных металлов, зам. директора). Одновременно был зам. директора Всесоюзного ин-та механич. обработки и обогащения руд (1941-43), с 1944 руководил отделом обогащения полезных ископаемых Ин-та горного дела АН СССР. Осн. труды по теории и технологии гидрометаллургич. процессов, обогащению полезных ископаемых и истории металлургии. Создал совр. науч. основы гидрометаллургии и извлечения благородных металлов из руд, теоретически обосновал процесс амальгамации, предложил эффективный способ интенсификации процесса цианирования. Гос. пр. СССР (1951, 1952). Награждён орденом Ленина, орденом Трудового Красного Знамени и медалями.

Соч.: Гидрометаллургия, М., 1949 (совм. с Д. М. Юхтановым); Металлургия благородных металлов, М., 1958; Флотация, М., 1961 (совм. с В. А. Глембоцким и В. И. Классеном); Гидрометаллургия с применением ионитов, М., 1964 (совм. с С. А. Тэтару). Лит.: Игорь Николаевич Плаксин, М., 1962 (Материалы к биобиблиографии ученых СССР. Серия технических наук. Горное дело, в. 10). А. С. Фёдоров.

ПЛАКУН-ТРАВА, дербенник иволистный, многолетнее травянистое растение из рода дербенник.

ПЛАН (от лат. planum - плоскость), 1) чертёж, изображающий в условных знаках на плоскости (в масштабе 1:10000 и крупнее) часть земной поверхности (топографич. П.). 2) Горизонтальный разрез или вид сверху к.-л. сооружения или предмета (см., напр., План в архитектуре). 3) То же, что горизонтальная проекция (см. Начертательная, геометрия). 4) Заранее намеченный порядок, последовательность осуществления к.-л. программы, выполнения работы, проведения мероприятий (например, народнохозяйственный, производственный, стратегический, учебный П., см. Планирование народного хозяйства). 5) Замысел, проект, основные черты к.-л. работы, изложения (П. доклада, пьесы и т. п.). 6) Способ рассмотрения, построения, подхода к чему-либо (в теоретич. П., в двух П. и т. п.). 7) Размещение объектов на изображении (передний, средний, задний П.) и их размеров (крупный, мелкий П., см., напр., План кинематографический).

ПЛАН в архитектуре, 1) выполненное в определённом масштабе графич. Изображение горизонтальной проекции здания (или одного из его этажей или помещений) или комплекса зданий, населённого пункта в целом или отдельных его частей. На П., в зависимости от его назначения, могут быть указаны конструкции стен и опор, расстановка мебели в интерьерах, расположение оборудования и схема технологич. процесса в производств. помещениях, озеленение терр. и схема трансп. сети в городе и др. План обычно характеризует форму и конфигурацию сооружения. 2) Характеристика расположения осн. частей здания или ансамбля на уровне земли (в многоэтажных зданиях и в комплексах, размещённых на сложном рельефе,- на разных уровнях).

ПЛАН кинематографический, расположение в пространстве и масштаб изображения объекта в кадре. По положению объекта различают: первый, второй и дальний П., по масштабу-крупный, средний и общий. Смена П.-осн. форма построения изобразительно-монтажной композиции сцен и эпизодов фильма.

ПЛАН ВЫРАЖЕНИЯ, лингвистический термин, употребляемый в глоссематике, но используемый языковедами др. школ для обозначения определённым образом организованной области материальных средств, служащих для передачи языковых сообщений. Противополагается плану содержания, под к-рым понимается "мир мысли", воплощаемый в языке, т. е. организованная определённым образом область всего того, что может быть предметом языкового сообщения. Глоссематика выделяет в каждом из планов форму и субстанцию, членя язык на 4 сферы (стратума): форма выражения, субстанция выражения, форма содержания, субстанция содержания. Форма обоих планов специфична для каждого языка и не зависит от той субстанции, в к-рой она проявляется. Субстанция каждого из планов определяется через понятия формы (сети отношений между элементами данного плана) и материала (нек-рой нерасчленённой, но поддающейся членению аморфной массы звуков и т. п. и идей) и трактуется как материал, расчленённый посредством формы. Обычно термин "П. в." применяется к области звуковых явлений, т. к. для концепций, отличных от глоссематики, осн. объектом лингвистики является устная разновидность естеств. языка. Напротив, в глоссематич. теории подчёркивается равноправность фонетической, графич. (для письм. языка) или любой иной субстанции выражения, в к-рой может манифестироваться форма выражения, оставаясь тождественной самой себе. Одной из осн. идей глоссематики является тезис об изоморфизме языковых планов. Вместе с тем утверждается их неконформальность, выражающаяся в том, что и в том и в другом языковых планах наряду с означающими и означаемыми выделяются их элементы, не соотносимые однозначным образом с сущностями противоположного плана (т. н. фигуры выражения и содержания). Именно это определяет целесообразность членения естественного языка на П. в. и план содержания, тогда как для др. семиотич. систем, в инвентарь к-рых не входят незнаковые единицы, подобное членение не является необходимым.

Лит.: Ельмслев Л., Пролегомены к теории языка, в кн.: Новое в лингвистике, в. 1, М., 1960; Мартине А., О книге "Основы лингвистической теории" Луи Ельмслева, там же; [Мурат В. П.], Глоссематическая теория, в кн.: Основные направления структурализма, М., 1964; Апресян Ю. Д., Идеи и методы современной структурной лингвистики, М., 1966. Т. В. Булыгина.

ПЛАН НАРОДНОХОЗЯЙСТВЕННЫЙ, см. Планирование народного хозяйства.

ПЛАН СОДЕРЖАНИЯ, лингвистический термин, употребляемый в глоссематике, под к-рым понимается организованная определённым образом область всего того, что может быть предметом языкового сообщения; противополагается плану выражения.

Лит. см. при ст. План выражения.

ПЛАН СЧЕТОВ, счётный план, система бухгалтерских счетов, предусматривающая их количество, группировку и цифровое обозначение в зависимости от объектов и целей учёта. В П. с. включаются синтетические (счета первого порядка) и связанные с ними аналитич. счета (субсчета, или счета второго порядка). Каждому из них даётся краткое наименование, точно соответствующее объекту учёта. Основой построения П. с. служит группировка объектов учёта по их экономич. признакам (напр., счета для учёта осн. средств, предметов труда; затрат на произ-во; готовой продукции, товаров и реализации; финанс. средств, фондов и финанс. результатов и др.). Счета располагаются в последовательности, позволяющей взаимосвязанно отражать в бухгалтерском учёте ресурсы х-ва и их источники, особенности их участия в кругообороте средств предприятий и организаций в процессе произ-ва, распределения и использования обществ. продукта. В целях ускорения и облегчения учётных записей счетам первого порядка присваивается условный шифр, а субсчетам - порядковый номер в пределах каждого синтетич. счёта. Инструкция по применению П. с. содержит краткую характеристику объектов учёта по каждому счёту и назначения счетов, общую схему их корреспонденции, показывающую типичные бухгалтерские записи по счетам, взаимосвязанным единством хоз. процессов и операций.

Единые П. с. (с учётом особенностей отраслей нар. х-ва) используются только в социалистич. странах. Для капиталистич. стран характерно большое разнообразие номенклатуры бухгалтерских счетов, где применение той или иной номенклатуры определяется собственниками предприятий. В СССР для обеспечения единства и полноты бухгалтерского учёта во всех отраслях нар. х-ва типовые П. с. отд. отраслей утверждаются Мин-вом финансов СССР по согласованию с ЦСУ СССР. П. с. бухгалтерского учёта для колхозов устанавливают ЦСУ и Мин-во с. х-ва СССР.

П. с. бюджетных и финансово-кредитных учреждений имеют свои особенности, определяемые спецификой деятельности этих организаций.

ПЛАНАРИИ, группа беспозвоночных из подотряда Tricladida класса ресничных червей. П. отличаются крупными размерами (дл. тела до 35 см). Распространены по всему земному шару. Обитают в пресных водах, реже - в морях, а в тропиках - и на почве. Питаются мелкими беспозвоночными. Рыбы планарий не едят, т. к. в их коже имеются ядовитые железы.

ПЛАНАРНАЯ ТЕХНОЛОГИЯ, планарный процесс (англ. planar, от лат. planus - плоский, ровный), первоначально - совокупность технологич. операций, проводимых для получения полупроводниковых (ПП) приборов с электронно-дырочными переходами, границы к-рых выходят на одну и ту же плоскую поверхность ПП пластины и находятся под слоем защитного диэлектрич. покрытия; в современном, более широком смысле - совокупность технологич. операций, проводимых для получения практически любых ПП приборов и интегральных схем, в т. ч. и таких, у к-рых границы электронно-дырочных переходов не выходят на одну плоскую поверхность. Термины "П. т." и "планарный прибор" появились в 1959, когда амер. фирмой "Фэрчайлд" (Fairchild) были созданы первые планарные кремниевые транзисторы.

Осн. технологич. операции при изготовлении классич. планарного кремниевого транзистора с n-p-n-переходами выполняются в след. последовательности. На отшлифованной, а затем отполированной, тщательно очищенной плоской поверхности пластины из монокристаллич. кремния с электропроводностью n-типа (рис., а)термич. окислением в сухом или влажном кислороде создают слой двуокиси кремния (SiO2) толщиной от неск. десятых до 1,0-1,5 мкм (рис., 6). Далее производят фотолитографич. обработку этого слоя (см. Фотолитография): на окисленную поверхность кремния наносят слой фоторезиста, чувствительного к ультрафиолетовому излучению; пластину с высушенным слоем фоторезиста помещают под шаблон - стеклянную пластину с рисунком, в заданных местах прозрачным для ультрафиолетового излучения; после обработки излучением фоторезист в тех местах, под к-рыми должен сохраняться слой SiO2, полимеризуют (задубливают), с остальной части пластины фоторезист снимают и удаляют травлением обнажившийся слой SiO2, после чего снимают оставшийся фоторезист (рис., в). Затем в участки, где нет плёнки окисла, проводят диффузию бора (акцепторной примеси) для создания в материале исходной пластины (коллекторная область) базовой области с электропроводностью р-типа. Т. к. диффузия одновременно идёт и перпендикулярно поверхности пластины, и параллельно ей, т. е. под края окисной плёнки, то границы электронно-дырочного перехода между коллекторной и базовой областями, выходящие на поверхность пластины, оказываются закрытыми слоем SiO2 (рис., г). После проведения диффузии бора (или одновременно) поверхность пластины повторно подвергают окислению и повторно производят фотолитографии, обработку (рис., д)с целью создания эмиттерной области с электропроводностью n-типа диффузией фосфора (донорной примеси) в заданные участки базовой области. При этом границы электронно-дырочных переходов между эмиттерной и базовой областями оказываются также закрытыми слоем SiO2 (рис., е). После диффузии доноров или одновременно с ней проводят третье окисление и над эмиттерной областью создают слой чистой SiO2 или фосфорно-силикатного стекла. Затем производят последнюю фотолитографич. обработку и вытравливают над эмиттерной и базовой областями в плёнке окисла отверстия для контактов к этим областям (рис., ж). Контакты создают нанесением тонкой металлической плёнки (обычно Аl; рис., э). Контакт к коллекторной области . осуществляют путём металлизации нижней поверхности исходной пластины. Пластину кремния разрезают на отд. кристаллы, каждый из к-рых имеет транзисторную структуру. Наконец, каждый кристалл помещают в корпус и герметизируют последний.
[1945-1.jpg]
Стадии изготовления планарного транзистора: а - исходная пластина; 6 - после первого окисления; в - после первой фотолитографической обработки; г - после создания базовой области и второго окисления; д - после второй фотолитографической обработки; в - после создания эмиттерной области и третьего окисления; ж - после третьей фотолитографической обработки; з - после металлизации; 1 - исходный кремний с электропроводностью n-типа; 2 - маскирующая плёнка двуокиси кремния; 3 - базовая область; 4 - эмиттерная область; 5 -металлическая плёнка (контакты).

По мере своего развития П. т. включила в себя ряд новых процессов. В качестве материала защитных плёнок используют не только SiO2, но и нитрид кремния, оксинитрид кремния и др. вещества. Для их создания применяют пиролиз, реактивное (в кислородной среде) распыление кремния и др. процессы. Для селективного удаления защитной диэлектрич. плёнки, помимо обычной оптич. фотолитографии, применяется обработка электронным лучом (т. н. электронолитография). Для легирования кремния, кроме диффузии, используют ионное внедрение донорных и акцепторных примесей. Получило распространение сочетание методов П. т. с технологией эпитаксиального выращивания (см. Эпитаксия). В результате такого сочетания создан широкий класс разнообразных планарно-эпитаксиальных ПП приборов. Появилась возможность получать стойкие защитные диэлектрич. плёнки не только на кремнии, но и на других ПП материалах. В результате были созданы планарные ПП приборы на основе германия и арсенида галлия. В качестве легирующих примесей в П. т. используют не только бор и фосфор, но также др. элементы третьей и пятой групп периодич. системы элементов Д. И. Менделеева.

Гл. достоинство П. т., послужившее причиной её распространения в полупроводниковой электронике, заключается в возможности использования её как метода группового изготовления ПП приборов, что повышает производительность труда и процент выхода годных приборов, позволяет уменьшить разброс их параметров. Применение в П. т. таких прецизионных процессов, как фотолитография, диффузия, ионное внедрение, даёт возможность очень точно задавать размеры и свойства легируемых областей и в результате получать параметры и их сочетания, недостижимые при др. методах изготовления ПП приборов. Защитные диэлектрич. плёнки, закрывающие выход электронно-дырочных переходов на поверхность ПП материала, позволяют создавать приборы со стабильными характеристиками, мало меняющимися во времени. Этому способствует также ряд спец. мер: поверхность пластин перед нанесением защитной плёнки тщательно очищают, при создании защитных плёнок используют особо чистые исходные вещества (напр., бидистиллированную воду, к-рая после последней дистилляции не контактирует с внеш. средой) и т. д.

Лит.: Кремниевые планарные транзисторы, под ред. Я. А. Федотова, М., 1973; Пресс Ф. П., Планарная технология кремниевых приборов, М.,1974.

Е. З. Мазель.

ПЛАНАРНЫЙ ПРОЦЕСС, совокупность технологич. операций, более точно характеризуемая термином планарная технология.

ПЛАНАЦИЯ (от лат. planum - плоскость, равнина), выравнивание рельефа совместными процессами денудации и аккумуляции в условиях относительно спокойного тектонич. режима территории. Итогом П. является полого-волнистая равнина - пенеплен в гумидном климате и педиплен в условиях аридного климата.

ПЛАНЕЛЬЕС Хуан Хуанович (8.4.1900, Херес, Испания,- 25.8.1972, Москва), микробиолог и фармаколог, акад. АМН СССР (1969; чл.-корр. 1953); чл.-корр. Академии медицины Испании. По национальности испанец. Окончил лечебный ф-т Мадридского ун-та (1921). В 1926-36 науч. руководитель одного из исп. медико-фармацевтич. предприятий и директор (с 1930) Ин-та клинич. исследований в Мадриде. В 1936-39 начальник сан.-мед. службы центр. республиканской армии, затем статс-секретарь здравоохранения Испанской Республики. С 1939 - в СССР; с 1943 в Ин-те эпидемиологии и микробиологии им. n. ф. Гамалеи АМН СССР. Осн. труды по биол. стандартизации фармацевтических и биопрепаратов, сульфаниламидам, лекарственной устойчивости микробов и др. Награждён 2 орденами, а также медалями.

Соч.: О теориях химиотерапевтического действия, "Журнал микробиологии, эпидемиологии и иммунобиологии", 1952, № 7; В. К. Высокович. 1854 - 1912, М., 1953; Побочные явления при антибиотикотерапии бактериальных инфекций, 2 изд., М., 1965 (совм. с А. М. Харитоновой); Серотонин и его значение в инфекционной патологии, М., 1965 (совм. с З. А. Попененковой). Е. К. Пономарь.

ПЛАНЁР (франц. planeur, от planer - парить), безмоторный летательный аппарат тяжелее воздуха. Движется поступательно под действием собственного веса. Его полёт в спокойной атмосфере происходит с постоянным снижением под нек-рым углом к горизонту (углом планирования) и основан на тех же физ. законах, что и полёт самолёта. При наличии в атмосфере восходящих потоков воздуха становится возможным полёт П. без потери высоты или с её набором - парение. Совр. П. различают: по числу мест - одно-, двух- и многоместные; по назначению - учебные, тренировочные и рекордные (спортивные). Одноместные рекордные П. бывают стандартного (с размахом крыла до 15 м) и открытого (без ограничения размаха) классов.

Первый П. был построен и испытан франц. моряком Ж. Ле Бри в 1868. Используя для запуска буксируемую лошадью тележку, на к-рой располагался П., он сумел осуществить планирующие полёты на расстояние до 30 л. В кон. 19 - нач. 20 вв. было совершено большое число кратковременных планирующих спусков с холмов, благодаря к-рым человек научился управлять полётом П. В 1891-96 нем. инж. О. Лилиенталъ первый провёл большое число успешных планирующих полётов на расстояние до 250 м на т. н. балансирных П. Управление такими П. сводилось к перемещению центра тяжести аппарата путём отклонения тела лётчика в нужную сторону. Последователями О. Лилиенталя стали в Великобритании инж. П. Пилчер, в США инж. О. Шанют и бр. О. и У. Райт. Успешные полёты на П. бр. Райт в 1901-03 позволили им построить самолёт, представлявший собой несколько увеличенную копию их П.; на нём они впервые совершили полёт в 1903. Начиная примерно с 1908 полёты на балансирных П. становятся распространёнными. Позже баланс был заменён управлением рулями - такими же, как и на самолётах. В 1913 в Крыму русский конструктор С. П. Добровольский впервые в России совершил парящие полёты продолжительностью ~5 мин на П.-биплане, к-рый имел систему рулевого управления; в нём лётчик находился в сидячем положении.

В СССР планёростроение получило размах в 20-30-е гг.; конструкторами были К. К. Арцеулов, Г. Ф. Грошев, В. И. Емельянов, С. В. Ильюшин, Б. Н. Шереметев, А. С. Яковлев и мн. др. В период 2-й мировой войны 1939-45 в СССР, США, Великобритании, Германии, Японии строились многоместные десантные буксирные П. для переброски солдат и техники через линию фронта. На фронтах Великой Отечеств. войны 1941-45 применяли 7-местный десантный П. А-7 конструкции О. К. Антонова и 11-местный Гр-29 конструкции В. К. Грибовского. Первым в мире десантным буксирным П. был построенный в 1932 в Москве 18-местный П. "Яков Алкснис" конструкции Б. Д. Урлапова.

В нач. 70-х гг. 20 в. П. (спортивного назначения) и методы полётов на них были значительно усовершенствованы, что позволило выполнить рекордные полёты на Выс.до 14 км, дальностью св. 1000 км (см. Планёрный спорт). Известными конструкторами современных П. являются: в СССР - О. К. Антонов, конструкторский коллектив Казанского авиац. ин-та, Б. О. Карвялис, Б. И. Ошкинис, В. Ф. Спивак и др.; в Польше - А. Курбиль, В. Окармус; в ФРГ - Г. Вейбель, К. Холингхаус.

П. 20-х гг. имели деревянную конструкцию (рис. 1). По своему внешнему виду, размерам, принципу управления и размещению лётчика они мало чем отличались от самолётов тех лет, однако их масса была значительно меньше. В дальнейшем конструкция П. претерпела существенные изменения, к-рые привели к увеличению аэродинамич. качества П. (отношения подъёмной силы крыла к полной силе лобового сопротивления) и удлинения крыла (отношения размаха крыла к его ширине), а также к уменьшению миним. скорости снижения П. (до 0,5 м/сек). Стал применяться ламинаризированный профиль крыла с характерной изогнутостью в хвостовой его части. Благодаря тому, что лётчик стал располагаться в кабине в полулежачем положении ногами вперёд, а кабину лётчика закрыли прозрачным "фонарём", не выступающим за контур фюзеляжа, резко уменьшилось макс. сечение фюзеляжа (мидель). Было применено одноколёсное шасси, убирающееся в полёте (рис. 2). Осн. конструкционными материалами для совр. П. служат дюралюминий и стеклопластик, дерево применяется значительно реже.

Рис. 1. Планер А-5 конструкции К. К. Арцеулова. 1923.

Рис. 2. Планёр БК-7 "Летува" конструкции Б. О. Карвялиса. 1972.


Запуск П. осуществляется различными способами. В 30-х гг. для этого использовали резиновый шнур, и П. запускался, как камень из рогатки. Начиная с 1931 сов. планеристы освоили старт с помощью буксировки П. за самолётом. С тех пор такой старт (как правило, до Выс.600 м) сделался обычным для спортивных П. Осн. способом взлёта П. без помощи самолёта стал автостарт - подъём посредством стального троса и лебёдки с приводом от двигателя внутреннего сгорания (высота подъёма 200-300 м). В 60-х гг. получили распространение также П. с мотором - мотопланёры, осуществляющие самостоят. взлёт.

Основные лётно-технич. характеристики совр. П. имеют след. значения: наибольшее аэродинамическое качество 40-53; размах крыла до 29 м, удлинение крыла 20-36; нагрузка на крыло 250-350 н/м2; скорость снижения 0,4-0,8 м/сек; скорость полёта (при наибольшем аэродинамич. качестве) 80 -100 км/ч; максимально допустимая скорость полёта 220-250 км/ч.

Лит.: Пи ьецух А. И., Крылья молодежи, М., 1954; Шереметев Б. Н., Планеры, М., 1959: Костенко И. К., Сидоров О. А., Шереметев Б. Н., Зарубежные планеры, М., 1959; Замятин В. М., Планеры и планеризм, М., 1974 (лит.); Keedus U., Purilend, Tallinn 1962; Skarbinski a., Stafiej W. Projektowaniei konstrukcja szybowcow, Warsz. 1965; Podrgcznik pilota szybowcowego Warsz., 1967. И. К. Костенко

ПЛАНЁРНЫЙ СПОРТ, один из видов авиац. спорта, включающий соревнования на планерах - безмоторных летательных аппаратах тяжелее воздуха. В совр. программу П. с. входят полёты: скоростные по треугольным маршрутам на 100, 200, 300 и 500 км; в цель с возвращением на старт; с посадкой в конечном пункте маршрута; на т. н. открытую дальность и на дальность с проходом одного или двух поворотных пунктов. Соревнования проводятся на планерах стандартного (размер крыла до 15 м) и открытого (конструкция без ограничений ) классов.

Зарождение П. с. относится к концу 19- началу 20 вв. В России первые кружки планеристов созданы в 1900-х гг. в Москве (Н. Е. Жуковский), Тбилиси (А. В. Шиуков), Киеве (Н. Б. Делоне, Г. П. Адлер и др.), Петербурге (Н. А. Рынин, В. А. Лебедев и др.), в Крыму (К. К. Арцеулов). С планеризмом связано начало творческой деятельности таких учёных и авиаконструкторов, как А. Н. Туполев, Б. Н. Юрьев, В. П. Ветчинкин, С. П. Королёв, С. В. Ильюшин, А. С. Яковлев, О. К. Антонов и др. Массовое развитие П. с. в СССР началось с 1923, когда состоялись первые всесоюзные планёрные испытания (Крым, Коктебель, ныне Планёрское), на к-рых Л. А. Юнгмейстер установил первые рекорды страны (на планёре конструкции Арцеулова). Становление и развитие П. с. связаны с деятельностью Об-ва друзей воздушного флота, Осоавиахима (впоследствии ДОСААФ СССР). В 1934 Осоавиахимом учреждено звание мастера П. с. СССР; в числе первых мастеров П. с.- Л. Г. Минов, С. Н. Анохин, И. М. Сухомлин, В. Л. Лисицын, В. М. Ильченко, В. Л. Расторгуев, М. К. Раценская, И. А. Карташов, А. В. Степанчонок. В разных районах страны были открыты планёрные станции, школы, организованы кружки планеристов. К 1941 сов. планеристам принадлежало 13 мировых рекордов (из 18, регистрировавшихся Междунар. авиац. федерацией - ФАИ). В 1948 создана всесоюзная секция П. с. (в 1960 вошла в состав Федерации авиац. спорта СССР), с 1966 самостоят. федерация П. с. В 1949 П. с. включён в Единую всесоюзную спортивную классификацию. В 1923-74 состоялось 36 чемпионатов СССР по П. с. Среди абсолютных чемпионов СССР и рекордсменов мира - Веретенников, А. П. Самосадова, В. В. Гончаренко, В. И. Чувиков, Е. Г. Руденский, М. И. Африканова, О. А. Манафова, Э. В. Лаан, С. П. Судейките, В. Ю. Панафутин и др. В 1964 в Орле открыт Центр. спортивно-планёрный клуб ДОСААФ СССР.

С 1948 проводятся раз в два года чемпионаты мира по П. с. В 1950 ФАИ создана планёрная комиссия, на к-рую возложено руководство развитием П. с. в мире, организация и проведение крупнейших междунар. соревнований, чемпионатов мира (в 1974 объединяла планеристов ок. 60 стран). В 1974 сов. планеристам принадлежало 9 из 32 мировых рекордов, в т. ч. дальности полёта на 1-местном планёре (749 км, О. В. Клепикова), на 2-местном планёре (846 км, Т. Д. Павлова; 921 км, Ю. А. Кузнецов), дальности полёта до намеченного пункта на 1-местном планёре (731 км, Т. Н. За-гайнова), на 2-местном планёре (864 км, И. А. Горохова).

За рубежом П. с. наиболее развит в Польше, США, ФРГ, Франции, ГДР, Чехословакии, Великобритании, Югославии. Чемпионами мира были Э. Макула и Я. Врублевский (Польша), А. Смит и Дж. Моффат (США), X. Ведль (Австрия), Г. Рейхман (ФРГ), Г. Акс (Швеция) и др.

Вопросы П. с. освещаются в журнале ДОСААФ СССР "Крылья Родины".

А. Д. Винокуров.

ПЛАНЁРСКОЕ (до 1944 - Коктебель), посёлок гор. типа в Крымской обл. УССР. Подчинён Феодосийскому горсовету. Расположен на