загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

ель управления за наименьшее возможное время или с минимальным расходом горючего, или с максимальным экономич. эффектом и т. п.

В качестве типичного можно привести управляемый объект, закон движения к-рого описывается системой обыкновенных дифференциальных уравнений
[1831-1.jpg]

где х1, . . ., хn - фазовые координаты, характеризующие состояние объекта в момент времени t, а и1, . . ., иr - управляющие параметры. Управление объектом означает выбор управляющих параметров как функций времени

Uj = Uj(t), j=1,..., r, (2)

являющихся допустимыми с точки зрения имеющихся возможностей управления объектом. Напр., в прикладных задачах часто требуется, чтобы в каждый момент времени точка (u1, . . ., ur)принадлежала заданному замкнутому множеству U. Это последнее обстоятельство делает рассматриваемую вариационную задачу неклассической. Пусть заданы начальное

(хо1, . . ., хоn) и конечное (х11, . . ., х1n)

состояния объекта (1). Об управлении (2) говорят, что оно реализует цель управления, если найдётся такой момент времени t1 > t0, что решение (х1 (t), . . ., хn(t)) задачи
[1831-2.jpg]

удовлетворяет условию х1 (t1) = x11. Качество этого управления будем оценивать значением функционала
[1831-3.jpg]

где f0 (х1, . . ., хn, u1,..., иr) - заданная функция. Задача О. у. состоит в отыскании такого реализующего цель управления, для к-рого функционал (4) принимает наименьшее возможное значение. Т. о., математич. теория О. у.- это раздел математики, рассматривающий неклассические вариационные задачи отыскания экстремумов функционалов на решениях уравнений, описывающих управляемые объекты, и управлений, на к-рых реализуется экстремум.

Сформулируем для поставленной задачи необходимое условие оптимальности управления.

Принцип максимума Понтрягина. Пусть вектор-функция
[1831-4.jpg]

- оптимальное управление, а вектор-функция
[1831-5.jpg]

- соответствующее ему решение задачи (3). Рассмотрим вспомогательную линейную систему обыкновенных дифференциальных уравнений
[1831-6.jpg]

зависящую, помимо х и и, от вектора ф = (фо, ф1, . . ., фn). Тогда у линейной системы (6) существует такое нетривиальное решение
[1831-7.jpg]

что для всех точек t из отрезка [t0, t1], в к-рых функция (5) непрерывна, выполнено соотношение
[1831-8.jpg]

К виду (1) обычно приводятся уравнения движения в случае управляемых механич. объектов с конечным числом степеней свободы. В многочисленных реальных ситуациях возникают и иные постановки задач О. у., отличающиеся от приведённой выше: задачи с фиксированным временем, когда продолжительность процесса заранее задана, задачи со скользящими концами, когда про начальное и конечное состояния известно, что они принадлежат нек-рым множествам, задачи с фазовыми ограничениями, когда решение задачи (3) в каждый момент времени должно принадлежать фиксированному замкнутому множеству, и др. В задачах механики сплошных сред характеризующая состояние управляемого объекта величина х является функцией уже не только времени, но и пространственных координат (напр., величина х может описывать распределение температуры в теле в данный момент времени), а закон движения будет дифференциальным уравнением с частными производными. Часто приходится рассматривать управляемые объекты, когда независимая переменная принимает дискретные значения, а закон движения представляет собой систему конечно-разностных уравнений. Наконец, отдельную теорию составляет О. у. стохастическими объектами.

Лит.: Математическая теория оптимальных процессов, 2 изд., М., 1969 (авт. Л. С. Понтрягин, В. Г. Болтянский, Р. В. Г а м к р е л и д з е, Е. Ф. Мищенко); Красовский Н. Н., Теория управления движением, М., 1968; Моисеев Н. Н., Численные методы в теории оптимальных систем, М., 1971. Н. X, Розов.

ОПТИМАЛЬНЫЕ ЦЕНЫ при социализме, цены, получаемые в процессе расчёта оптимального плана произ-ва и потребления продукции на одном и том же массиве экономич. информации методами математического программирования (см. Планирование оптимальное). Применение О. ц. в масштабах нар. х-ва возможно только в условиях социалистич. системы х-ва. Действие основного экономического закона социализма позволяет представить народнохозяйственное планирование в экстремальной динамической задаче математического программирования.

О. ц. обладают следующими свойствами: обеспечивают хозрасчётное стимулирование выполнения плановых заданий в натуральном выражении (все производств, способы, вошедшие в оптимальный план и измеренные в О. ц., рентабельны; все отвергнутые хоз. решения убыточны); оценивают затраты отдельных хоз. звеньев с позиций их нар.-хоз. эффективности (О. ц. включают не только прямые затраты на произ-во конкретного продукта, но и всю совокупность дополнит, затрат, к-рые общество вынуждено нести в др. сферах в связи с произ-вом данного продукта); характеризуют уменьшение или увеличение обществ, затрат и результатов только в пределах небольших изменений произ-ва и потребления продукции. Последнее свойство О. ц. позволяет использовать их для оценки микроэкономич. процессов. Н. Я. Петраков.

ОПТИМАЛЬНЫЙ (от лат. optimus- наилучший), наиболее благоприятный, лучший из возможных (напр., О. решение).

ОПТИМАТЫ (лат. optimates - знатные, от optimus - наилучший), идейно-политич. течение в Римской республике (кон. 2-1 вв. до н. э.), отражавшее интересы нобилитета и противостоявшее популярам.

ОПТИМЕТР (от греч. optos - видимый и ...метр), прибор для измерения линейных размеров (относительным методом), преобразовательным элементом в к-ром служит рычажно-оптич. механизм. Рычажной передачей является в механизме качающееся зеркало, оптич. преобразователем - автоколлимац. трубка (см. Автоколлиматор). Качающееся зеркало в измерит, приборах впервые применил нем. инж. И. Сакстон в 1837. Прибор, в к-ром использовалось качающееся зеркало с автоколлимационной зрительной трубкой, впервые изготовлен в 1925 (фирма Цейс, Германия). Выпускаются вертикальные и горизонтальные О., различающиеся только конструкцией станины. Оптич. преобразователь О.-трубка может иметь окулярный или проекционный отсчёт (рис.). В трубке с проекционным отсчётом освещается лампой пластина, на к-рой с одной стороны от центра нанесена шкала, а с другой - индекс. В окулярной трубке пластина освещается "зайчиком" от специального зеркала. Изображение шкалы попадает сначала на неподвижное зеркало, а затем на зеркало, которое качается и занимает различные угловые положения в зависимости от положения измерит, стержня. В трубке с окулярным отсчётом нет неподвижного зеркала. После отражения от зеркала изображение шкалы попадает на вторую половину пластины (накладывается на индекс). Вторичное изображение шкалы, к-рое смещается относительно неподвижного индекса при перемещении стержня, проектируется с помощью зеркал на экран в проекц. трубке О. (или рассматривается через окуляр). Трубка О. имеет шкалу с ценой деления 1 мкм, предел измерения по шкале ± 100 мкм.

Схема оптиметра с проекционным отсчётом: 1 - лампа; 2 - пластина со шкалой и индексом; 3 - экран; 4 - проектирующие зеркала; 5-неподвижное зеркало; 6-качающееся зеркало; 7 - измерительный стержень.

О. с ценой деления 0,2 мкм и пределом измерения ± 25 мм известен под назв. ультраоптиметр; его отличие от рассмотренной схемы заключается в том, что изображение шкалы дважды отражается от подвижного зеркала, благодаря чему увеличивается длина оптич. рычага, что позволяет уменьшить цену деления.

О. снабжаются съёмной оснасткой: приспособлениями для измерения среднего диаметра резьбы, размеров проволочек, длин концевых мер и т. п.; проекционной насадкой для окулярных трубок, электроконтактной головкой для измерения отверстий размерами от 1 до 13,5 мм (горизонтальный О.) и др.

Лит. см. при ст. Оптический измерительный прибор. Н. Н. Марков.

ОПТИМИЗАЦИЯ (от лат. optimum - наилучшее), процесс нахождения экстремума (глобального максимума или минимума) определённой функции или выбора наилучшего (оптимального) варианта из множества возможных. Наиболее надёжным способом нахождения наилучшего варианта является сравнительная оценка всех возможных вариантов (альтернатив). Если число альтернатив велико, при поиске наилучшей обычно используют методы математического программирования. Применить эти методы можно, если есть строгая постановка задачи: задан набор переменных, установлена область их возможного изменения (заданы ограничения) и определён вид целевой функции (функции, экстремум которой нужно найти) от этих переменных. Последняя представляет собой количественную меру (критерий) оценки степени достижения поставленной цели. В т. н. динамич. задачах, когда ограничения, наложенные на переменные, зависят от времени, для нахождения наилучшего варианта действий используют методы оптимального управления и динамич. программирования.

Результаты любых практич. мероприятий характеризуются несколькими показателями, напр, затратами, объёмом выпускаемой продукции, временем, степенью риска и т. п. Рассматривая конкретную задачу О., устанавливают, может ли в качестве целевой функции (критерия оценки) быть принят один из показателей, характеризующих ожидаемые результаты реализации того или иного варианта, с условием, что на численные значения др. показателей наложены строгие ограничения. Так, при выборе наилучшего варианта произ-ва заданного количества определённой продукции в качестве критерия иногда принимают затраты или время (при фиксированных затратах). При нахождении наилучшего варианта использования имеющегося оборудования, предназначенного для произ-ва продукции одного вида в определённых условиях, критерием может служить объём выпуска этой продукции. Выбор метода О. для решения конкретной задачи зависит от вида целевой функции и характера ограничений. Применение методов математического программирования существенно ускоряет процесс решения задачи на нахождение экстремума благодаря тому, что сокращается число перебираемых вариантов.

В большинстве практич. задач, в особенности в задачах, связанных с долгосрочным планированием, отсутствуют строгие ограничения на мн. переменные (или показатели). В этих случаях имеют дело с задачами т. н. векторной оптимизации. Если каждый вариант характеризуется двумя показателями, значения к-рых переменны, напр, объёмом выпуска продукции и затратами, требуется установить, что лучше: затратить определённую сумму и произвести нек-рое количество продукции или за счёт увеличения затрат увеличить объём выпуска продукции. При решении задач подобного типа математич. методы позволяют отобрать из множества возможных вариантов рациональные, при к-рых определённые объёмы продукции производятся с минимальными затратами.

Чтобы среди большого числа рациональных вариантов найти оптимальный, нужна информация о предпочтительности различных сочетаний значений показателей, характеризующих варианты. При отсутствии этой информации наилучший вариант из числа рациональных выбирает руководитель, ответственный за принятие решения.

Сравнивая варианты, необходимо учитывать различные неопределённости, напр, неопределённость условий, в которых будет реализован тот или иной вариант. Выбирая, напр., наилучший вариант произ-ва определённой с.-х. культуры, рассматривают набор вариантов погоды, к-рая может быть в том или ином р-не, и сопоставляют все "за" и "против" каждого варианта действий. Сравнение вариантов может производиться по совокупности значений одного показателя, характеризующего результат (если на все остальные показатели наложены ограничения). Так, при 4 вариантах погоды каждый вариант действий будет характеризоваться 4 значениями показателя. Если варианты характеризуются только одним показателем, значения которого переменны, то их сравнение в нек-рых случаях можно проводить по формальному критерию (критерии максимина, минимаксного сожаления и т. п., рассматриваемые в теории статистических решений). В остальных случаях для сравнительной оценки вариантов нужно иметь шкалу предпочтений. При её отсутствии выбор осуществляет руководитель (на основе собственного опыта и интуиции или с помощью экспертов).

Лит.: Юдин Д. Б., ГольштейнЕ. Г., Задачи и методы линейного программирования, М., 1961; Турин Л. С., Дымарский Я. С., Меркулов А. Д., Задачи и методы оптимального распределения ресурсов, М., 1968; В е н т ц е л ь Е. С., Исследование операций, М., 1972. Ю. С. Солнышков.

ОПТИМИЗМ И ПЕССИМИЗМ (от лат. optimus - наилучший и pessimus - наихудший), понятия, характеризующие ту или иную систему представлений о мире с точки зрения выраженного в ней позитивного или негативного отношения к сущему и ожиданий от будущего. В этом отношении проявляются общая духовная атмосфера эпохи, особенно в периоды социальных сдвигов, а также умонастроения обществ, групп и классов, идеология к-рых выражает их восхождение к господству и стремление переустроить общество на более справедливых началах или, наоборот,- упадочные настроения классов, сходящих с историч. арены (напр., совр. буржуазия). О. и п.- это ценностная (см. Ценность) сторона мировосприятия, в ней мир осмысливается лишь с точки зрения соотношения в нём добра и зла, справедливости и несправедливости, счастья и бедствий. Это общий тон и настрой, пронизывающий конкретное содержание представлений, но не обусловливающий его строго однозначно. О. и п. могут быть присущи как непосредственно-чувств. мироощущению, так и мировоззрению в целом. В первом случае это светлый или мрачный эмоциональный тон восприятия жизни и ожидания будущего, радостное приятие существующего или настроение безысходности. Во втором - это учение о "сущности" мира, где добро и зло часто онтологизируются, изображаются как независимые друг от друга начала мира, а борьба между ними - как внутр. пружина или смысл наличных явлений, происходящих событий, истории в целом.

Марксистское мировоззрение не имеет ничего общего с этими идеалистич. и метафизич. концепциями О. и п. Науч. взгляд на историю не допускает такого ценностного истолкования развития человечества, в к-ром историч. восхождение изображается лишь как внешнее проявление борьбы двух изначально существующих абс. начал - добра и зла. Представление о том, что мир в целом "идёт к лучшему", характерно для обыденного сознания. Предел этого движения (окончательная победа добра над злом) заключает в себе логич. противоречие, т. к. добро и зло - понятия соотносительные, и такое идеальное совершенство мира означало бы конец всякой истории. В действительности мысль о борьбе добра со злом имеет смысл только применительно к конкретному историч. моменту, и победа добра реально может означать только решение к.-л. социальной проблемы, переход от не удовлетворяющего человека состояния к лучшему будущему, к-рое выступает как цель социального действия. По словам В. И. Ленина, "... мир не удовлетворяет человека, и человек своим действием решает изменить его" (Поли. собр. соч., 5 изд., т. 29, с. 195). Понятие общественного прогресса в марксистской науке имеет в виду историческое восхождение обществ, жизни, человеческой жизнедеятельности ко всё более высоким (усложняющимся, более универсальным, свободным, сознательным и т. п.) формам, измеряющееся не степенью осуществления раз и навсегда данных понятий справедливости, счастья, благоденствия или извечной сущности человека, а практич. решением задач, стоящих перед обществом в каждый историч. момент (напр., социалистич. революция, строительство нового общества). Это движение бесконечно (коммунизм есть начало подлинной истории), и каждая его новая ступень относится к прошлой как разрешение её противоречий и коллизий, т. е. как более совершенная. В этом смысле марксистское мировоззрение и называют оптимистическим. О. Г. Дробницкий.

ОПТИМУМ (от лат. optimum - наилучшее), уровень силы или частоты раздражений, при к-ром осуществляется макс, деятельность органа или ткани. Явление О. описано в 1886 Н. Е. Введенским, к-рый на нервно-мышечном препарате лягушки установил, что нарастание до нек-рого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы - тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением. Ср. Пессимум.

ОПТИМУМ НАРОДНОХОЗЯЙСТВЕННЫЙ, наилучший вариант использования ресурсов, имеющихся в распоряжении общества. Достижение О. н. возможно только в условиях обществ, собственности на средства произ-ва. Нахождение оптимума - осн. задача нар.-хоз. планирования (см. Планирование оптимальное), означает выбор наилучшего режима функционирования экономики. В соответствии с высшей целью социализма наилучшим является такой режим функционирования экономики, при к-ром обеспечивается наиболее полное удовлетворение потребностей общества. Они включают потребности членов общества (питание, одежда, жильё, мед. обслуживание, отдых и т. п.) и производств, потребности, которые постоянно развиваются.

Сложность решения задачи на нахождение О. н. в динамике обусловлена необходимостью учёта уровня удовлетворения текущих и перспективных потребностей, наличием различного рода неопределённостей (в междунар. обстановке, в темпах развития науки и техники, в метеорологич. условиях и т. п.), несоизмеримостью показателей, характеризующих степень удовлетворения отд. потребностей общества, и т. д. Между потребностями, произ-вом и потреблением имеется тесная взаимосвязь. Для удовлетворения своих потребностей общество непрерывно выделяет значит, часть своих ресурсов на производств, нужды. Однако оценка вариантов функционирования экономики должна производиться по конечным показателям, характеризующим удовлетворение непроизводств, потребностей (при установлении определённых ограничений по возможностям произ-ва в конце рассматриваемого периода времени Т).

Ресурсы, находящиеся в распоряжении общества, ограничены, поэтому какая-то часть потребностей всегда остаётся неудовлетворённой. В процессе поиска оптимального варианта плана (см. Оптимизация ) требуется найти наиболее предпочтительный с точки зрения интересов общества вариант, т. е. установить наиболее рациональную степень удовлетворения отд. потребностей. Если оценивать степень удовлетворения отдельной потребности общества показателем Wi (i =1,2,..., n), где п - число потребностей, то каждый вариант использования ресурсов будет характеризоваться совокупностью га показателей. В разные годы рассматриваемого периода времени

Т значения Wi могут быть неодинаковыми, поэтому возникает необходимость характеризовать каждый вариант набором совокупностей показателей W1t ,

W2t , . . ., Wnt , где t - номер года в рассматриваемом периоде (t = 1, 2, . . ., Т).

Численные значения показателей Wit зависят от условий, к-рые могут сложиться в будущем и при разработке плана представляются в значит, степени неопределёнными. Нужно решить: что лучше - надёжно (при любых условиях) обеспечить ср. уровень удовлетворения определённой потребности или ориентироваться на полное удовлетворение потребностей при благоприятных условиях, рискуя получить результат ниже среднего при неблагоприятном стечении обстоятельств.

Учёт неопределённостей является одним из важных факторов при раскрытии содержания О. н. Различные методы сравнения альтернатив в условиях неопределённости рассматриваются в системном анализе и исследовании операций.

В связи с невозможностью сведения противоречивых показателей, характеризующих степень удовлетворения отд. потребностей общества, к единой метрич. шкале, варианты плана приходится сравнивать по совокупности значений большого числа показателей. Для сравнения вариантов может быть использована только порядковая шкала и соответствующий ей критерий -"лучше - хуже". Порядковая шкала (шкала предпочтений) для оценки вариантов удовлетворения потребностей общества в целом должна основываться на результатах опроса экспертов и предпочтениях руководителей, ответственных за принятие решений; при этом должны учитываться результаты массовых социологич. обследований. При наличии порядковой шкалы, отражающей предпочтения общества по отношению к различным сочетаниям значений показателей, характеризующих степень удовлетворения отд. потребностей общества, можно сравнивать различные варианты функционирования экономики и выбирать наилучший.

Одним из важнейших условий достижения О. н. является количественное обоснование социально-экономич. целей общества. Для этого нужна информация о предполагаемых затратах на достижение каждой отд. цели и предпочтительности их различных сочетаний с точки зрения интересов общества. В процессе обоснования целей рассматриваются их различные сочетания, к-рые могут быть достигнуты при имеющихся и воспроизводимых ресурсах, и выбирается наиболее предпочтительное.

Сопоставление ожидаемых результатов и затрат при распределении ресурсов на решение важнейших социально-экономич. проблем и при распределении производств, задач и ресурсов между отраслями нар. х-ва является одним из гл. условий достижения О. н. Существуют и др. взгляды на проблему оптимального развития нар. х-ва (см. Дискуссия об оптимальном планировании, Москва, 1966. Материалы, 1968).

Лит.: Оптимальное планирование и совершенствование управления народным хозяйством. [Сб. ст.], М., 1969; Проблемы народнохозяйственного оптимума. [Сборник], Новосиб., 1973. Ю. С. Солнышков.

ОПТИЧЕСКАЯ АКТИВНОСТЬ, способность среды вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света). Впервые обнаружена в 1811 Д. Ф. Араго в кварце. В 1815 Ж. Б. Био открыл О. а. чистых жидкостей (скипидара), а затем растворов и паров многих, гл. обр. органических, веществ. Он же установил (см. Био закон), что: 1) угол ф поворота плоскости поляризации линейно зависит от толщины l слоя активного вещества (или его раствора) и концентрации с этого вещества -ф=[а]lс (коэфф. [а] наз. удельной О. а.); 2) поворот в данной среде происходит либо по часовой стрелке (ф > 0), либо против неё (ф < 0), если смотреть навстречу ходу лучей света. Соответственно оптически-активные вещества, проявляющие естественную О. а. (О. а., не вызываемую наличием внешних полей), разделяют на правовращающие [положительно вращающие, (d), ф > 0] и левовращающие [отрицательно вращающие, (l), ф < 0]. Это условное деление применимо в широких интервалах длин волн излучения. Оно теряет смысл лишь вблизи полос собственного (резонансного) поглощения среды; в 1896 франц. учёный Э. Коттон обнаружил, что в одном и том же веществе ф имеет различные знаки по разные стороны от полос резонансного поглощения (см. Поглощение света).

Нек-рые вещества оптически активны лишь в кристаллич. состоянии (кварц, киноварь и пр.), так что их О. а. есть свойство кристалла в целом; для них удельная О. а. обозначается просто а и формула Био записывается в виде ф = аl. Другие вещества активны в любом агрегатном состоянии; это означает, что их О. а. определяется свойствами отд. молекул. Удельная О. а. зависит не только от рода вещества, но и от агрегатного состояния, темп-ры, давления, типа растворителя и т. д. Типичные значения [а] в град/дм*г/см3: 66,473 + 0,0127 с (раствор сахарозы в воде); 14,83-0,146 с (виннока-менная кислота в воде); -3,068 + 0,08959 с и-5,7 (яблочная кислота в воде и ацетоне соответственно); -37 (скипидар в воде); 40,9 + 0,135 с (камфора в этиловом спирте). Здесь с - концентрация растворённого вещества в г на 100 см3 раствора. Первые две величины верны в интервалах концентраций 0-50, [а] для камфоры - в интервале 10-50, остальные - при любой концентрации (если вообще зависят от неё). Эти значения приведены для стандартных условий: длины волны света 589,3 нм (D-линия натрия) и темп-ры 20 °С.

От естеств. О. а. отличают искусственную, или наведённую, О. а., проявляющуюся лишь при помещении оптически неактивного вещества в магнитное поле (Фарадея эффект; см. также Верде постоянная). Знак вращения в эффекте Фарадея зависит как от магнитных свойств среды (парамагнитна она, диамагнитна или ферромагнитна), так и от того, вдоль поля или против него распространяется излучение. Это связано с особым характером магнитного поля (определяющие его величины являются псевдовекторами, или осевыми векторами). Если линейно-поляризованный свет, прошедший через Слой вещества с естеств. О. а., отражается и проходит через тот же слой в обратном направлении, восстанавливается исходная поляризация, тогда как в среде с наведённой О. а. в аналогичном опыте угол поворота удвоится.

Феноменологич. (макроскопич.) теорию О. а. предложил в 1823 О. Ж. Френель, объяснивший О. а. различием преломления показателей среды п+ и п-для право- и левополяризованных по кругу световых волн. (Волну линейно-поляризованного спета всегда можно представить как совокупность двух право-и левополяризованных по кругу волн равной интенсивности; см. Поляризация света.) Полученное Френелем выражение имеет вид ф=Пи*l/Л*(n+-п-), где Л- длина волны излучения в вакууме; т. о., ф может быть значительным даже при очень малом различии n+ и п-, если l, как это обычно, бывает много больше Л. Этим объясняется чрезвычайно высокая чувствительность методов, основанных на измерении О. а. (напр., при определении различий в показателе преломления в 10 000 раз точнее самых точных измерений с помощью интерферометров).

Развитие теории О. а. тесно связано с изучением её дисперсии - зависимости а (или [а]) от Л. Ещё Био установил, что в исследованных им случаях а тем меньше, чем больше Л(ф ~ Л-2). Такая дисперсия характерна для т. н. нормальной О. а.- вдали от длин волн Хо, на к-рых в оптически-активном веществе происходит резонансное поглощение. Эме Коттон, изучавший О. а. для излучений с X, близкими к Хо, обнаружил а н о м а л ь ну ю О. а.- увеличение ее с ростом Л, а также различие поглощения показателей при этих длинах волн для право- и левополяризованных по кругу лучей - т. н. круговой дихроизм, или эффект Коттон а. Вследствие кругового дихроизма вблизи полос собственного поглощения не только поворачивается плоскость поляризации света, исходно поляризованного линейно, но и одновременно этот свет превращается в эллиптически-поляризованный.

Исследования О. а. показали, что для объяснения О. а. существен учёт изменения поля световой волны на расстояниях порядка размеров а молекулы (иона) вещества. (При описании мн. др. оптич. явлений таким изменением можно пренебречь, т. к. а/Л ~ 10-3, но как раз этот параметр определяет различие между п+ и п-.) Одним из решающих этапов выяснения природы О. а. явилось открытие Л. Постером в 1848 оптических антиподов - веществ, неразличимых по всем физ. (и многим хим.) свойствам, кроме направления вращения плоскости поляризации (отличаясь знаками, удельные О. а. двух антиподов равны по абс. величине). Оказалось, что оптич. антиподы (кристаллич. решётки в кристаллах, отд. молекулы в аморфных, жидких и газообразных оптически-активных веществах - такие молекулы наз. оптическими изомерами) являются зеркальными отражениями друг друга, так что никакими перемещениями и поворотами в пространстве не могут быть совмещены один с другим при полном тождестве образующих их элементов. Для молекул каждого из оптических изомеров характерна пространств, асимметрия - они не имеют плоскости зеркальной симметрии и центра инверсии (см. Изомерия, Стереохимия, Энантиоморфизм).

Теория О. а. молекулярных паров iB рамках классич. электронной теории (см. Лоренца - Максвелла уравнения) была разработана в 1915 М. Борном и независимо швед, физиком К. В. Озееном, к-рые показали, что наряду с асимметрией молекул следует учитывать несин-фазность микротоков, наведённых полем световой волны в разных частях молекул (при всей малости a/Л). Квантовую теорию О. а. паров построил в 1928 белы, учёный Л. Розенфельд. И в этой, более строгой с позиций совр. науки теории рассматриваются процессы, связанные с конечным размером молекул (происходящие на расстояниях ~ а). Для объяснения О. а. оказалось необходимым учитывать как электрический, так и магнитный дипольные моменты, наводимые в молекуле полем проходящей волны. Теория О. а. молекулярных сред, активных лишь в кристаллич. фазе, тесно связана с теорией экситонов, т. к. О. а. этих кристаллов определяется характером волн поляризации в них. О теории наведённой О. а. см. Магнитооптика, Фарадея эффект.

Совр. теории О. а. качественно правильно описывают это явление, однако количеств, теория дисперсии О. а. сталкивается со значит, трудностями в связи со сложностью изучаемых объектов.

О. а. обнаруживают широкие классы веществ, в особенности органических. Характер дисперсии О. а. весьма чувствителен к различным факторам, определяющим внутри- и межмолекулярные взаимодействия. Поэтому методы, основанные на измерении О. а., широко используются в физ., хим., биол. и др. науч. исследованиях и в промышленности (см. Поляриметрия, Сахариметрия).

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Б о р н М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Волькенштейн М. В., Молекулярная оптика, М.- Л., 1951; М a t h i е u J. P. Activite optique nature!le, в кн.: Encyclopedia of Physics (Handbuch des Physik), v. 28, B. - [a. o.], 1957. С. Г. Пржибельский.

ОПТИЧЕСКАЯ АНИЗОТРОПИЯ, различие оптических свойств среды в зависимости от направления распространения в ней оптического излучения (света) и состояния поляризации этого излучения (см. Поляризация света). Часто, особенно в кристаллооптике, под О. а. понимают только явление двойного лучепреломления. Более правильно, однако, относить к О. а. и вращение плоскости поляризации, происходящее в оптически-активных веществах. Естественная О. а. большинства кристаллов обусловлена характером их строения - неодинаковостью по разным направлениям поля сил, связывающих частицы в кристаллич. решётке, а в случае нек-рых оптически-активных кристаллов - также и особенностями возбуждённых состояний электронов и "ионных остовов" в этих кристаллах. Естеств. оптическая активность (вращение плоскости поляризации) веществ, к-рые проявляют её в любом агрегатном состоянии (кристаллич., аморфном, жидком, газообразном), связана с асимметрией строения отдельных молекул таких веществ и обусловленным ею различием во взаимодействии этих молекул с излучением различной поляризации. Наведённая (искусственная) О. а. возникает в средах, от природы оптически изотропных, под действием внешних полей, выделяющих в средах определённые направления. Это может быть электрич. поле (см. Керра эффект), магнитное (Коттона - Мутона эффект, Фарадея эффект), поле упругих сил (явление фотоупругости). К искусств. О. а. относится также двойное лучепреломление в потоке жидкости (М аксвелла эффект) и в средах, через к-рые пропускают световые потоки сверхвысокой интенсивности (обычно излучение лазеров). С. Г. Пржибелъский.

ОПТИЧЕСКАЯ ДЛИНА ПУТИ, оптический путь, между точками Л и Д прозрачной среды; расстояние, на к-рое свет (оптическое излучение) распространился бы в вакууме за время его прохождения от Л до В. Поскольку скорость света в любой среде меньше его скорости в вакууме, О. д. п. всегда больше реально проходимого светом расстояния (или, в предельном случае вакуума, равна ему). В оптич. системе, состоящей из р однородных сред (траектория луча света в такой системе - ломаная линия), О. д. п. равна суммаp lknk где lk - расстояние, пройденное

светом в k-той среде (k = 1, 2, . . ., р), пk - показатель преломления этой среды. Для одной среды (р - 1) сумма сокращается до единственного члена 1п. В оптически неоднородной среде (с плавно меняющимся и; траектория луча н такой среде - кривая В

линия) О. д. п. есть SBAп (l)dl, где dl - бесконечно малый элемент траектории луча. Понятие О. д. п. играет большую роль в оптике, особенно в геометрической оптике и кристаллооптике, позволяя сопоставлять пути, проходимые светом в средах, в к-рых скорость его распространения различна. Геом. место точек, для к-рых О. д. п., отсчитываемая от одного источника, одинакова, наз. поверхностью световой в о л-н ы; световые колебания на этой поверхности находятся в одинаковой фазе. См. также Разность хода лучей, Ферма принцип, Эйконал.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т.З); Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1, М.- Л., 1948; Б о р н М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973.

ОПТИЧЕСКАЯ ЗВУКОЗАПИСЬ, тоже, что звукозапись фотографическая.

ОПТИЧЕСКАЯ ИЗОМЕРИЯ, один из видов пространственной изомерии.

ОПТИЧЕСКАЯ ЛОКАЦИЯ, совокупность методов обнаружения, измерения координат, а также распознавания формы удалённых объектов с помощью электромагнитных волн оптич. диапазона - от ультрафиолетовых до дальних инфракрасных. О. л. позволяет с высокой точностью (до неск. десятков ел) производить картографирование земной поверхности, поверхности Луны, определять расстояние до облаков, самолётов, космич., надводных и подводных (используя зелёный участок спектра) объектов, исследовать распределение инверсионных и аэрозольных слоев в атмосфере. Практически создание оптич. локаторов с большой дальностью действия, высокими точностью и разрешающей способностью стало возможным только с появлением таких мощных источников когерентного излучения, как оптические квантовые генераторы - лазеры. В О. л. используются те же принципы определения координат, что и в радиолокации: оптич. локатор облучает объект с помощью передатчика и принимает отражённое от него излучение при помощи приёмника. Электрич. сигнал на выходе приёмника содержит информацию о параметрах лоцируемого объекта; характеристики этого сигнала в среднем пропорциональны координатам объекта. Методы обнаружения объектов оптич. локатором и определения их угловых координат в основном такие же, как в теплопеленгации (см. Инфракрасное излучение), а методы определения дальности такие же, как в радиолокации. Вследствие квантового характера взаимодействия лазерного излучения с детектором приёмника и когерентности лазерного излучения методы обработки сигнала в О. л. являются статистическими. Если оптич. локатор определяет только расстояние до объектов, он наз. электрооптич. дальномером.

Схема и принцип действия одного из типов оптич. локатора для слежения за авиационными и космич. объектами показаны на рис. Луч лазера, пройдя через коллиматор, системой зеркал направляется на объект. Отражённый от объекта луч улавливается плоским зеркалом и направляется на параболич. зеркало, с к-рого поступает одновременно на диссектор (или матрицу фотоприёмника) - для определения угловых координат и на фотоэлектронный умножитель (или иной детектор) - для определения дальности объекта. Электрич. сигналы с диссектора подаются в следящую систему, управляющую положением передающей и приёмной оптич. систем локатора.

Осн. преимущества оптич. локаторов перед радиолокаторами - большая точность определения угловых координат объектов (по максимуму отражённого сигнала) и высокая разрешающая способность по дальности. Напр., при использовании лазерного луча с углом расхождения, равным 10', погрешность определения угловых координат объекта составляет менее 1' (у радиолокаторов - 25-30'); при длительности светового импульса 10 нсек разрешение по дальности может достигать неск. см. Кроме того, оптич. локатор обладает высокой угловой разрешающей способностью, т. е. способностью различать 2 соседних равноудалённых объекта, к-рая обусловлена очень высокой направленностью излучения. Высокая разрешающая способность оптич. локатора даёт возможность решать задачу распознавания формы объектов. Существ, недостаток оптич. локаторов - затруднительное использование их в сложных метеорологич. условиях (при дожде, тумане, снеге и т. п.) для локации объектов на далёких расстояниях.

Схема и принцип действия оптического локатора: 1 - передатчик (лазер); 2 - коллиматор; 3, 4 - зеркала; 5 - передающая оптическая система; 6 - лоци-руемый объект; 7 - приёмная оптическая система; 8 - зеркало; 9 - полупрозрачное зеркало; 10 - узкополосный оптический фильтр; 11 - диссектор; 12 - зеркало; 13 - приёмник дальномерного устройства (фотоэлектронный умножитель); 14 - устройство ручного управления; 15 - следящая система. Пунктиром показан ход лучей, отражённых от объекта.

Лит.: К р и к с у н о в Л. 3., У с о л ь ц е в И. Ф., Инфракрасные системы обнаружения, пеленгации и автоматического сопровождения движущихся объектов, М., 19'68; Волохатюк В. А., Кочетков В. М., К р а с о в с к и и Р. Р., Вопросы оптической локации, М., 1971; К у рикша А. А., Квантовая оптика и оптическая локация, М., 1973. И. Ф. Усолъцев.

ОПТИЧЕСКАЯ МАССА АТМОСФЕРЫ, отношение массы воздуха, пронизанной пучком лучей Солнца от верхней границы атмосферы до поверхности Земли (при данном зенитном расстоянии), к массе воздуха, к-рая была бы пронизана этим пучком лучей, если бы Солнце находилось в зените. Понятие об О. м. а. используется в метеорологии при расчётах ослабления солнечной радиации, проходящей через атмосферу.

Лит.: Курс метеорологии (физика атмосферы), под ред. П. Н. Тверского, Л., 1951.

ОПТИЧЕСКАЯ НАКАЧКА, возбуждение микрочастиц (атомов, молекул и др.), составляющих вещество, с более низкого уровня энергии на более высокий уровень под действием света. См. Квантовая электроника, Квантовые стандарты частоты, Квантовый магнитометр, Лазер.

ОПТИЧЕСКАЯ ОРИЕНТАЦИЯ парамагнитных атомов, упорядочение с помощью оптического излучения направлений магнитных моментов и связанных с ними механич. моментов атомов газа (см. Атом). Открыта А. Кастлером в 1953 . Различают собственно О. о., при к-рой атомный газ приобретает макроскопич. магнитный момент, и выстраивание, характеризующееся появлением анизотропии распределения моментов атомов при сохранении равенства нулю полного макроскопич. момента газа. Собственно О. о. происходит при резонансном поглощении или рассеянии атомами поляризованного по кругу излучения (см. Поляризация света). Фотоны, такого излучения обладают моментом количества движения, равным ±h (h - Планка постоянная), и передают его атому при взаимодействии с ним. В газе парамагнитных атомов это приводит к преимуществ, ориентации механич. моментов электронов и, следовательно (см., напр., Магнетон), магнитных моментов атомов. Т. о., простейшее объяснение О. о. состоит в том, что она является следствием закона сохранения момента количества движения (см. Сохранения законы) в системе фотон - атом. Выстраивание, в отличие от собственно О. о., осуществляется не поляризованным по кругу, а линейно-поляризованным или неполяризованным излучением. Поглощение ориентированным газом падающего излучения заметно меняется. О. о. регистрируют по этому эффекту, а также по возникающей при ней оптической анизотропии газа - дихроизму (см. Плеохроизм), двойному лучепреломлению, появлению вращения плоскости поляризации проходящего света. Непосредственно О. о. осуществлена с парами щелочных и щёлочноземельных металлов, атомами инертных газов в метастабильных состояниях и нек-рыми ионами. Парамагнитные атомы, особенности электронного строения к-рых исключают их прямую О. о., могут ориентироваться косвенно - при соударениях с другими, уже ориентированными атомами (спиновый о б м е н). Возможна также О. о. носителей заряда в полупроводниках. Воздействие "внутреннего" магнитного поля ориентированных электронных оболочек может приводить к ориентации магнитных моментов ядер атомов (см. Ориентированные ядра, Отрицательная температура), к-рая сохраняется значительно дольше, чем электронная ориентация (как говорят, её время релаксации больше), в связи с чем этот эффект используют для создания квантовых гироскопов. Ориентированные атомы применяют для изучения слабых межатомных взаимодействий и взаимодействий электромагнитных полей с атомами. Квантовые магнитометры с О. о. (обычно электронной) позволяют регистрировать чрезвычайно малые (~10-8 э) изменения напряжённости магнитного поля в диапазоне от нуля до неск. сотен э. О. о. является частным случаем оптической накачки - перевода вещества в энергетически неравновесное состояние в процессах поглощения им света. Е. Б. Александров.

ОПТИЧЕСКАЯ ОСЬ линзы (вогнутого или выпуклого зеркал а), прямая линия, являющаяся осью симметрии преломляющих поверхностей линзы (отражающей поверхности зеркала); проходит через центры поверхностей перпендикулярно к ним. Оптич. поверхности, обладающие О. о., наз. осесимметричными (см. Зеркало, Линза). О. о. оптической системы - общая ось симметрии всех входящих в систему линз и зеркал.

ОПТИЧЕСКАЯ ОСЬ КРИСТАЛЛА, направление в кристалле, в к-ром свет_ распространяется, не испытывая двойного лучепреломления. Подробнее см. Кристаллооптика.

ОПТИЧЕСКАЯ ПЕЧЬ, устройство, в к-ром лучистая энергия от к.-л. источника с помощью системы отражателей фокусируется на площадку диаметром обычно 1-30 мм, а в крупных печах - до 350 мм, в результате чего на этой площадке может быть достигнута темп-ра 1000-5000 °С. О. п. широко применяются для проведения исследований физ.-хим. свойств материалов при высоких темп-pax, влияния интенсивных лучистых потоков на материалы и организмы, а также для плавки в особо чистых условиях, сварки и пайки тугоплавких материалов, выращивания монокристаллов, рафинирования цветных металлов и т. п. О. п. классифицируют в зависимости от источника лучистой энергии: солнечные печи (гелиопечи), в к-рых используется энергия солнечного излучения, и печи с искусств, источниками энергии (лампы накаливания, графитовые нагреватели, дуговые лампы, газоразрядные ксеноновые лампы сверхвысокого давления и плазменные излучатели). Кон-

струкция О. п. зависит от её назначения; во всех случаях в состав О. п. входят источник излучения, отражательное устройство, регулятор лучевого потока, с помощью к-рого изменяют и поддерживают темп-ру нагрева, и рабочая камера. Лит.: Оптические печи, М., 1969. В. М. Тымчак.

ОПТИЧЕСКАЯ ПИРОМЕТРИЯ, см. Пирометрия,

ОПТИЧЕСКАЯ ПЛОТНОСТЬ D, мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения F0, падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F, прошедшему через этот слой: D = = lg(F0/F); иначе, О. п. есть логарифм величины, обратной пропускания коэффициенту слоя вещества: D = lg(l/t). (В определении используемой иногда натуральной О. п. десятичный логарифм lg заменяется натуральным ln.) Понятие О. п. введено Р. Бунзеном; оно привлекается для характеристики ослабления оптического излучения (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стёкол и мн. др.), в светофильтрах и иных оптических изделиях. Особенно широко О. п. пользуются для количеств, оценки проявленных фотографич. слоев как в чёрно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии. Различают неск. типов О. п. в зависимости от характера падающего и способа измерения прошедшего потоков излучения (рис.).

Типы оптической плотности слоя среды в зависимости от геометрии падающего и способа измерения прошедшего потока излучения (в принятой в СССР сенситометрич. системе): а) регулярную оптическую плотность Dn определяют, направляя на слой по перпендикуляру к нему параллельный поток и измеряя только ту часть прошедшего потока, к-рая сохранила первоначальное направление; б) для определения интегральной оптической плотности DЕ перпендикулярно к слою направляется параллельный поток, измеряется весь прошедший поток; в) и г) два способа измерения, применяемые для определения двух типов диффу зной оптической плотности D (падающий поток - идеально рассеянный). Разность Dn - DE служит мерой светорассеяния в измеряемом слое.

О. п. зависит от набора частот v (длин волн X), характеризующего исходный поток; её значение для предельного случая одной единственной v наз. монохроматической О. п. Регулярная (рис., а) монохроматич. О. п. слоя нерассеивающей среды (без учёта поправок на отражение от передней и задней границ слоя) равна 0,4343 rvl, где kv- натуральный поглощения показатель среды, l - толщина слоя (rvl = nсl - показатель в ур-нии Бугера - Ламберта - Вера закона; если рассеянием в среде нельзя пренебречь, rv заменяется на натуральный ослабления показатель). Для смеси нереагирующих веществ или совокупности расположенных одна за другой сред О. п. этого типа аддитивна, т. е. равна сумме таких же О. п. отд. веществ или отд. сред соответственно. То же справедливо и для регулярной немонохроматич. О. п. (излучение сложного спектрального состава) в случае сред с неселективным (не зависящим от v) поглощением. Регулярная немонохроматич. О. п. совокупности сред с селективным поглощением меньше суммы О. п. этих сред. (О приборах для измерения О. п. см. в статьях Денситометр, Микрофотометр, Спектрозоналъная аэрофотосъёмка, Спектросенситометр, Спектрофотометр, Фотометр.)

Лит.: Гороховский Ю. Н., Левенберг Т. М., Общая сенситометрия. Теория и практика, М., 1963; Джеймс Т., Хиггинс Дж., Основы теории фотографического процесса, пер. с англ., М., 1954. Л. Н. Канарский.

ОПТИЧЕСКАЯ СВЯЗЬ, связь посредством электромагнитных колебаний оптич. диапазона (как правило, 1013 - 1015 гц). Использование света для простейших (малоинформативных) систем связи имеет давнюю историю (см., напр., Оптический телеграф). С появлением лазеров возникла возможность перенести в оптич. диапазон разнообразные средства и принципы получения, обработки и передачи информации, разработанные для радиодиапазона. Огромный рост объёмов передаваемой информации и вместе с тем практически полное исчерпание ёмкости радиодиапазона придали проблеме освоения оптич. диапазона в целях связи исключительную важность. Осн. преимущества О. с. по сравнению со связью на радиочастотах, определяемые высоким значением оптич. частоты (малой длиной волны): большая ширина полосы частот для передачи информации, в 104 раз превышающая полосу частот всего радиодиапазона, и высокая направленность излучения при входных и выходных апертурах, значительно меньших апертур антенн в радиодиапазоне. Последнее достоинство О. с. позволяет применять в передатчиках оптич. систем связи генераторы с относительно малой мощностью и обеспечивает повышенную помехозащищённость и скрытность связи.

Структурно линия О. с. аналогична линии радиосвязи. Для модуляции излучения оптич. генератора либо управляют процессом генерации, воздействуя на источник питания или на оптич. резонатор генератора, либо применяют дополнит, внешние устройства, изменяющие выходное излучение по требуемому закону (см. Модуляция света). При помощи выходного оптич. узла излучение формируется в малорасходящийся луч, достигающий входного оптич. узла, к-рый фокусирует его на активную поверхность фотопреобразователя. С выхода последнего электрич. сигналы поступают в узлы обработки информации. Выбор несущей частоты в системе О. с.- сложная комплексная задача, в к-рой должны учитываться условия распространения оптич. излучения в среде передачи, технич. характеристики лазеров, модуляторов, приёмников света, оптич. узлов. В системах О. с. находят применение два способа приёма сигналов - прямое детектирование и гетеродинный приём. Гетеродинный метод приёма, обладая рядом преимуществ, главные из к-рых - повышенная чувствительность и дискриминация фоновых помех, в технич. отношении много сложнее прямого детектирования. Серьёзным недостатком этого метода является существенная зависимость величины сигнала на выходе фотоприёмника от характеристик трассы.

В зависимости от дальности действия системы О. с. можно разделить на следующие осн. классы: открытые наземные системы ближнего радиуса действия, использующие прохождение излучения в приземных слоях атмосферы; наземные системы, использующие закрытые световодные каналы (волоконные световоды, светонаправляющие зеркально-линзовые структуры) для высокоинформативной связи между АТС, ЭВМ, для междугородной связи; высокоинформативные линии связи (гл. обр. ретрансляционные), действующие в ближнем кос-мич. пространстве; дальние космич. линии связи.

В СССР и за рубежом накоплен определённый опыт работы с открытыми линиями О. с. в приземных слоях атмосферы с использованием лазеров. Показано, что сильная зависимость надёжности связи от атмосферных условий (определяющих оптич. видимость) на трассе распространения ограничивает применение открытых линий О. с. относительно малыми расстояниями (неск. километров) и лишь для дублирования существующих кабельных линий связи, использования в малоинформативных передвижных системах, системах сигнализации и т. п. Однако открытые линии О. с. перспективны как средство связи между Землёй и космосом. Напр., с помощью лазерного луча можно передавать информацию на расстояние ~108 км со скоростью до 105бит в сек, в то время как микроволновая техника при этих расстояниях обеспечивает скорость передачи только ~10 бит в сек. В принципе, О. с. в космосе возможна на расстояниях до 1010км, что немыслимо для иных систем связи; однако построение космич. линий О. с. технически весьма сложно.

В земных условиях наиболее перспективны системы О. с., использующие закрытые световодные структуры. В 1974 показана возможность изготовления стеклянных световодов с затуханием передаваемых сигналов не более неск. дб/км. При совр. уровне техники, используя полупроводниковые диодные излучатели, работающие как в лазерном (когерентном), так и в некогерентном режимах, кабели со световолоконными жилами и полупроводниковые приёмники, можно построить магистрали связи на тысячи телефонных каналов с ретрансляторами, располагаемыми на расстояниях ок. 10 км друг от друга. Интенсивные работы по созданию лазерных излучателей со сроками службы ~ 10-100 тыс. ч, разработка широкополосных высокочувствительных приёмных устройств, более эффективных световодпых структур и технологии изготовления световодов большой протяжённости, по-видимому, сделают О. с. конкурентоспособной со связью по существующим кабельным и релейным магистралям уже в ближайшем десятилетии. Можно ожидать, что О. с. займёт важное место в общегос. сети связи наряду с др. средствами. В перспективе системы О. с. со световодными линиями по своим информационным возможностям и стоимости на единицу информации могут стать осн. видом магистральной и внутригородской связи.

Лит.: Ч е р н ы ш ё в В. Н., Ш е ре м ет ь е в А. Г., Кобзев В. В., Лазеры в системах связи, М., [1966]; П р а т т В. К., Лазерные системы связи, пер. с англ., М., 1972; Применение лазеров, пер. с англ., М., 1974. А. В. Невский, М. Ф. Стелъмах.

ОПТИЧЕСКАЯ СИЛА, характеризует преломляющую способность осесиммет-ричных линз и систем таких линз. О. с. есть величина, обратная фокусному расстоянию системы: ф = n'/f = = - n/f, где п' и п - преломления показатели сред, расположенных соответственно за и перед системой; f' и f - заднее и переднее фокусные расстояния системы, отсчитываемые от её г л а в н ы х плоскостей (см. Кардинальные точки оптической системы). Для системы, находящейся в воздухе (п = п' ~ 1), ф равна 1/f'. Следовательно, О. с. системы (или отдельной линзы) тем больше, чем сильнее эта система преломляет лучи света (чем меньше её фокусное расстояние). О. с. измеряется в диоптриях (м-1)', она положительна для собирающих систем и отрицательна для рассеивающих. Особенно широко понятием О. с. пользуются в диоптрике глаза и очковой оптике (см. также Линза, Очки).

ОПТИЧЕСКАЯ ТЕОРЕМА, устанавливает связь между уменьшением интенсивности волны, распространяющейся в среде, и полным сечением рассеяния этой волны. О. т. первоначально была сформулирована в физ. оптике и выражала мнимую часть показателя преломления (описывающую поглощение света) через полное сечение рассеяния света на рассеивающих центрах - осцилляторах. В квантовой механике О. т. вытекает из т. н. условия унитарности (условия равенства единице полной вероятности всех возможных процессов, происходящих в системе) и связывает мнимую часть амплитуды упругого рассеяния вперёд, Im f(0), с полным сечением а рассеяния частицы (на силовом центре или на др. частице):
[1831-9.jpg]

(р - импульс налетающей частицы в системе центра инерции). О. т. используется для установления связи между непосредственно измеряемыми на опыте характеристиками рассеяния частиц. В. П. Павлов.



1926.htm
ПЕРВИЧНОТРАХЕЙНЫЕ, онихофоры (Onychophora), подтип влаголюбивых наземных беспозвоночных, по осн. признакам организации близкий кольчатым червям и членистоногим. Нек-рые зоологи выделяют П. в самостоят. тип. Единств. класс - Protracheata (неск. десятков видов). Тело П. гусеницеобразное, дл. до 10 см, покрыто мягкой кутикулой с обильными поперечными складками. Голова неясно обособлена, несёт пару усиков и пару глазков. В ротовой полости пара крючковидных челюстей. Туловище с 14-43 парами нерасчленённых ног - выростов стенки тела. Кожно-мускульный мешок состоит из наружных кольцевых и внутр. продольных гладких мышц. Органы дыхания - пучки трахей, дыхальца к-рых разбросаны по всей поверхности тела. Выделит. органы типа целомодуктов открываются у оснований ног. Пищеварит. система в виде трубки, проходящей вдоль тела, представлена в основном средней кишкой; пищевод и задняя кишка очень короткие. Кровеносная система - трубчатый спинной сосуд (сердце) с отверстиями, через к-рые в сердце поступает из смешанной полости тела гемолимфа. Нервная система лестничного типа. П. раздельнополы; самцы либо прикрепляют сперматофоры к покровам тела самок, и сперматозоиды проникают сквозь трещины покровов к яйцу, находящемуся в яичнике, либо откладывают их на субстрат, и самки захватывают их половым отверстием. Оплодотворение осуществляется в организме самки. П. рода Ooperipatus откладывают яйца, остальные либо яйцеживородящие (зародыш развивается за счёт желтка, но вылупляется ещё в половых путях самки, напр. у рода Eoperipatus), либо живородящие (в матке образуется плацента, через к-рую к зародышу поступают питат. вещества из гемолимфы самки, напр. у родов Peripatopsis, Peripatus). Все П.- хищники; для ловли добычи выбрасывают клейкую слизь через отверстия спец. желез, открывающиеся на сосочках по бокам рта. Распространены П. на всех материках Юж. полушария, на о-вах Малайского архипелага, в Н. Гвинее и Н. Зеландии; в Северном полушарии встречаются только в Гималаях и Мексике.

[1925-1.jpg]

Первичнотрахейные: 1 - Реripatus tuberculatus; 2 - Peripatopsis capensis; 3 - Eoperipatus weldoni (c брюшной стороны).

М. С. Гиляров.

 











 
1829.htm
ОНСАГЕРА ТЕОРЕМА, одна из основных теорем термодинамики неравновесных процессов, установлена в 1931 Л. Онсагером. В термодинамич. системах, в к-рых имеются градиенты темп-ры, концентраций компонентов, химич. потенциалов, возникают необратимые процессы теплопроводности, диффузии, химических реакций. Эти процессы характеризуются тепловыми и диффузионными потоками, скоростями хим. реакций и т. д. Они наз. общим термином "потоки" и обозначаются Ji, а вызывающие их причины (отклонения термодинамич. параметров от равновесных значений) - термодинамическими силами (Хk). Связь между Jiи Xk, если термодинамич. силы малы, записывают в виде линейных ур-ний
[1828-1.jpg]

где кинетические коэфф. Lir, определяют вклад различных термодина-мич. сил Xk в создание потока Ji. Соотношения (1) иногда наз. феноменологическими ур-ниями, a Lik - феноменологич. коэфф.; значения Lik, рассчитывают или находят опытным путём. Термодинамич. потоки и силы могут быть скалярами (случай объёмной вязкости), векторами (теплопроводность, диффузия) и тензорами (сдвиговая вязкость).

Согласно О. т., если нет магнитного поля и вращения системы как целого, то Lik = Lki. (2) В том же случае, когда на систему действует внешнее магнитное поле Н или система вращается с угловой скоростью w,
[1828-2.jpg]

Соотношения симметрии (2) и (3), к-рые иногда называют соотношениями взаимности Онсагера, устанавливают связь между кинетич. коэфф. при т. н. перекрёстных процессах (напр., между коэфф. термодиффузии и коэфф. Дюфура эффекта, обратного термодиффузии). В отсутствие магнитного поля и вращения эти коэфф. равны между собой, в частности равны кинетич. коэфф. для перекрёстных химич. реакций.

Лит.: Г р о о т С. Р. д е, Термодинамика необратимых процессов, пер. с англ., М., 1956; Денби г К., Термодинамика стационарных необратимых процессов, пер. с англ., М., 1954; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971. П.. Н. Зубарев.

ОНСАГЕРА УРАВНЕНИЕ ЭЛЕКТРОПРОВОДНОСТИ, соотношение, показывающее зависимость электропроводности электролита от его концентрации. О. у. э. применимо для весьма разбавленных растворов сильных электролитов. В простейшем случае для полностью диссоциированного одно-одновалентного электролита (напр., NaCl) О. у. э. имеет вид:
[1828-3.jpg]

Здесь Л - эквивалентная электропроводность, Ло - эквивалентная электропроводность при бесконечном разбавлении, с - концентрация в молях на 1 л, А = 82,4/(еТ)1/2n и В = 8,20-105/(еТ)3/2, где е - диэлектрическая проницаемость, n - вязкость (газ), Т - абс. темп-pa (К). О. у. э. выведено Л. Онсагером.
1827.htm
ОМА ЗАКОН, устанавливает, что сила постоянного электрич. тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника:

Г. С. Ом.

[1827-1.jpg]

Коэфф. пропорциональности R, зависящий от геометрия, и электрич. свойств проводника и от темп-ры, наз. омическим сопротивлением или просто сопротивлением, данного участка проводника. О. з. открыт в 1826 нем. физиком Г. С. Омом.

В общем случае зависимость между I и U нелинейна, однако на практике всегда можно в определённом интервале напряжений считать её линейной и применять О. з.; для металлов и их сплавов этот интервал практически неограничен.

О. з. в форме (1) справедлив для участков цепи, не содержащих источников электродвижущей силы (эдс). При наличии таких источников (аккумуляторов, термопар, динамомашин и пр.) О. з.

имеет вид:
[