загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

., 1973; Doyle P. А., Liam O'Flaherty: an annotated bibliography, Troy (N. Y.), 1972. А. П. Саруханян.

ОФЛЮСОВАННЫЙ АГЛОМЕРАТ, комплексный окускованный железорудный материал, содержащий повышенное кол-во основных окислов (CaO, MgO) в виде хим. соединений, образующихся в процессе спекания агломерац. шихты с добавкой флюсов - известняка, доломита (см. Агломерация). Это позволяет исключить сырые флюсы из доменной шихты с соответствующим улучшением технико-экономич. показателей доменной плавки. В совр. металлургии практически весь железорудный агломерат выпускается офлюсованным (1973).

Лит.: Базилевич С.В.. Вегман Е.Ф., Агломерация, М., 1967; Ширяев П.А., Ярхо., Металлургическая н экономическая оценка железных руд, М., 1971.

ОФНЕТ (Ofnet), две палеолитич. пещеры (Большой и Малый О.) на Ю. ФРГ (к С.-З. от г. Аугсбург). Содержат по нескольку перекрывающих друг друга культурных слоев, относящихся к разным ступеням позднего палеолита, к мезолиту, неолиту и эпохе металлов. В пещере Большой О. обнаружено (1908, Р. Р. Шмидт) мезолитич. погребение человеческих черепов, принадлежавших древним европеоидам. В одном круглом углублении лежало 27 черепов, в другом, по соседству, - 6. Черепа были обращены лицевыми частями к входу в пещеру, густо посыпаны красной охрой. Здесь же находились украшения из просверлённых раковин и оленьих зубов. Большинство черепов принадлежало женщинам и детям.

Лит.: Ефименко П. П., Первобытное общество, 3 изд., К., 1953; Мu11еr-Каrpe Н., Handbuch der Vorgeschichte. Bd 1 - Altsteinzeit, Munch., 1966.

ОФОРМИТЕЛЬСКОЕ ИСКУССТВО, область декоративного искусства; праздничное (т. е. временное) оформление улиц, площадей, производственных территорий, а также оформление витрин, демонстраций, народных празднеств, физкультурных выступлении и парадов, различного рода экспозиций. О. и., пользующееся выразительными средствами архитектуры, скульптуры, живописи, графики, театра (см. "Массовое действо"), киноискусства и светотехники, позволяет создавать наиболее массовые образцы синтеза искусств. Взаимодействуя с архитектурой, О. и., в отличие от последней, обычно заключает в себе программное, наглядно-агитационное содержание. О. и. родственно театрально-декорационному; но если в традиц. театре декорации и др. элементы спектакля воспринимаются извне, с одной точки (из зрительного зала), то в О. и. зритель обычно находится внутри многопланового пространства (напр., выставки) или же сам становится участником художественно решённого действия (демонстрация). Если монументальное искусство отражает дух эпохи в наиболее обобщённых, в известной мере непреходящих образах и создаётся из "вечных" материалов (камень, металл, смальта и т. д.), то О. и. - это быстрая, нередко публицистически-острая реакция на сегодняшний день, в к-рой плакатный лаконизм образов сочетается с лёгкостью материалов, мобильностью конструкций, остротой пространственных и цветовых решений. Произв. О. и., как правило, не создаются с расчётом на типовое воспроизведение.

Истоки О. и. лежат в религ. ритуалах древности, празднествах, посвящённых солнцу, приходу весны и т. п., др.-греч. процессиях, др.-рим. триумфах. Оформление ср.-век. массовых действ - карнавалов и религ. процессий - часто становилось ярким проявлением нар. художеств. культуры. Если в ср. века эстетич. единство произв. О. и. складывалось более или менее стихийно, то с эпохи Возрождения усиливается организующая роль оформителя (обычно живописца или архитектора), подчиняющего театрализованное действо целостному художеств. замыслу (в области О. и. работали такие мастера, как Леонардо да Винчи, И. Джонс, П. П. Рубенс). В 15-18 вв. О. и., развивавшееся в рамках ист. стилей (ренессанс, маньеризм, барокко), было важнейшей составной частью придворных феерий и триумфальных шествий (в России появившихся при Петре I). Широко используя декоративную живопись и скульптуру, фейерверки, различные механич. трюки, художники-оформители этого периода нередко стремились с помощью аллегорий и эмблем создать жизнеутверждающие, проникнутые светским духом образы. В церемониях Великой французской революции (Ж. Л. Давид и др.) и празднествах Парижской Коммуны 1871 О. и. выступало как средство наглядной политич. агитации, обращённой к нар. массам. Роль техники максимально возрастает в О. и. 20 в., когда всё чаще применяются аудио-визуальные методы воздействия на зрителя (напр., кино), фотографии и фотомонтажи, свето-кинетические конструкции. Особое внимание уделяется совершенствованию методов музейной и выставочной экспозиции: мастера О. и. активизируют зрительное восприятие, оттеняя наиболее важные в образном отношении черты экспоната. Если официальное О. и. капиталистич. стран, чаще всего применяемое для коммерческой рекламы, насыщено штампами "массовой культуры", то прогрессивные обществ. организации и партии используют его для борьбы за мир, социальный прогресс и демократию. Сов. О. и. возникло в первые дни Великой Октябрьской социалистич. революции, что свидетельствовало о поисках форм, к-рые утверждали бы пафос героич. подъёма масс, в общедоступной форме раскрывая всемирно-ист. смысл происходящих событий. О. и. объединило усилия мастеров всех существовавших в дореволюционной России противоречивых творческих направлений и впервые побудило их осознать свою роль в формировании рождающейся социалистич. культуры. Для О. и. этой эпохи (оформление отд. гор. кварталов и шествий в дни праздников, убранство агитационных поездов, трамваев, пароходов), идейно связанного с ленинским планом монументальной пропаганды, были характерны объёмные декоративные построения, проникнутые динамикой обнажённых ритмов и конструкций (Н. И. Альтман, Л. В. Руднев), более спокойные архитектурно-пространственные и декоративные решения площадей, магистралей, отд. зданий (бр. Веснины, М. В. Добужинский), а также живописные тематические панно (С. В. Герасимов, П. В. Кузнецов, Б. М. Кустодиев, К. С. Петров-Водкин). С ростом экономич. мощи и международного престижа СССР особое значение приобрело оформление выставок, пропагандирующих достижения социалистич. строя (Л. М. Лисицкий, Н. П. Прусаков,

Н. М. Суетин, Р. Р. Клике). Художники (М.Ф. Ладур, Я.Д. Ромас, В.А. Стенберг) стали систематически участвовать в оформлении парадов и демонстраций. Мастера сов. О. и., широко используя возможности и средства всех иск-в, а также достижения техники, стремятся к совершенствованию художественно-эстетич. решения облика городов и сёл, разработке новых методов музейной и выставочной экспозиции, развитию новых форм наглядной агитации, внедрению в жизнь новых, сов. обрядов.

Лит.: Художник-оформитель. [Сб. ст.], Л., 1962; Искусство современной экспозиции. Выставки. Музеи, М., [1965]; Агитационно-массовое искусство первых лет Октябрьской революции. Каталог выставки, [М-, 1967]; Рождественский К., Ансамбль и экспозиция, [Л., 1970]; Агитационно-массовое искусство первых лет Октября. Материалы и исследования, М., 1971; Немиро О., В город пришёл праздник. Из истории художественного оформления советских массовых празднеств, Л-, 1973; Художник и город. [Сб.], М., 1973; Les fetes de la Renaissance, 1 - 2, P., 1956 - 60.

К. И. Рождественский.

ОФОРТ (от франц. eau-forte- азотная кислота), вид гравюры на металле, в к-ром углублённые элементы печатной формы создаются путём травления металла кислотами. Известен с нач. 16 в.; до этого времени линии изображения на металлич. пластине гравировались резцами. Техника О. менее трудоёмка. На цинковую (или медную) пластину ("доску") наносят кислотоупорный лак, стальной иглой процарапывают слой лака по линиям будущего изображения до металла, затем пластину помещают в азотную кислоту (медную - в раствор хлорного железа). Травление можно производить в неск. приёмов. После первого травления в местах, где отсутствовал лак, образуются незначит. углубления. Затем места, к-рые соответствуют светлым участкам изображения, вновь покрывают лаком и вторично подвергают травлению, углубляя печатающие элементы, и т. о. за несколько раз получают желаемую градацию тонов. Для печати краска закатывается в углубления, её избыток снимается с ровной поверхности; под действием давления краска переходит на бумагу. В широком смысле в понятие "О." часто включают и др. виды гравюры с травлением - акватинту, лавис, к-рые обычно сочетаются со штриховым О., а также мягкий лак и др. Все эти виды (особенно акватинта) могут, как и штриховой О., применяться для цветной печати.

Э. М. Фарбер.

Как правило, к О. обращаются художники, склонные к живописному видению мира, тяготеющие к смешению реальных и фантастич. образов и увлечённые таящимися в технике О. возможностями особой непосредственности в воплощении замысла, а также случайными эффектами, произвольно возникающими при печати (возможность получать различные оттиски с одной пластины). "Капризы" травления и печати, как и всей технологии О., дают в распоряжение мастера-офортиста дополнит. средства художеств. выразительности. Повторное травление создаёт богатейшую тональную шкалу, а правильно заточенный инструмент сообщает штриху особую точность и изящество. На пластине, покрытой лаком, рисуют иглой или гвоздём, просто на металле - кистью, смоченной кислотой, и т. д., что диктует самый различный характер изобразит. средств. В О. возможны волосяной штрих, пятно и мягкая широкая линия. Офортная линия, свободная, непринуждённая, способствует достижению широчайшей градации в эмоциональном строе образа-от проникновенной лиричности до напряжённого драматизма. Соединение травленой линии и акватинты (дающей пятно с мягкими переходами тона), эффекты светотени, усиленные применением "сухой иглы" (к-рая сообщает штрихам особую насыщенность, "бархатистость"), неповторимая фактура, возникающая при многократном травлении,- всё это придаёт О. черты, отличающие его от любого др. вида гравюры.

Первые известные О. были выполнены в нач. 16 в. нем. мастерами Д. Хопфером и А. Дюрером. (В 16 в. для О. использовались железные "доски"; в 17-18 вв. гравёры работали на медных "досках" и лишь в 19 в. обратились к цинковым пластинам, более простым в обработке.) Расцвет иск-ва О. относится к 17 в. Во Франции Ж. Калло создаёт образы, отмеченные острым гротеском и в то же время полные жизненной правды; его мастерство отличается особой виртуозностью. Одним из первых Калло начинает применять повторное травление. В Голландии иск-во Рембрандта во многом предопределяет творчество последующих поколений мастеров О. Соединяя динамичный штрих, сочные или едва заметные линии "сухой иглы", повторное травление, добиваясь тончайших нюансов светотени, Рембрандт раскрывает почти всю широту средств художеств. выразительности О. и создаёт с их помощью сложнейшие психологич. характеристики, состояния трагичности и глубокого жизнеутверждения. Одновременно с Рембрандтом в Голландии работают и такие значит. офортисты, как X. Сегерс, А. ван Остаде, П. Поттер, Я. ван Рёйсдал, Н. Берхем. Во Фландрии 17 в. ярко выделяется портретное иск-во А. Ван Дейка. Италия 17 в. также выдвигает крупных мастеров О.- Г. Рени и Дж. Б. Кастильоне, а Испания этого времени - X. Риберу. С сер. 18 в. обозначаются две линии развития О.: творческий О. и репродукционный. Блестящими мастерами творч. О. были Дж. Б. Тьелоло, Каналетто и Дж. Б. Пиранези в Италии, А. Ватто, Ф. Буше и О. Фрагонар во Франции, У. Хогарт в Великобритании. К 18 в. относится и распространение цветного О. На рубеже 18-19 вв. испанец Ф. Гойя намечает новые пути в развитии О. Обладая поразит. чувством материала, он сочетает О. с акватинтой и, используя её живописные качества, достигает высокой эмоциональной напряжённости своих образов. В 19 - нач. 20 вв. как офортисты плодотворно работают Ж. Ф. Милле, К. Коро, Ш. Ф. Добиньи, Э. Мане, Т. Стейнлен во Франции, А. Менцель, Л. Коринт в Германии, А. Цорн в Швеции, Я. Б. Йонгкинд в Голландии, Дж. М. Уистлер в США, И. И. Шишкин, В. В. Матэ, В. А. Серов в России. В 20 в. продолжаются усиленные поиски новой выразительности О. путём усложнения и комбинирования техник, увеличения экспрессивного напряжения линий, расширения палитры, подчёркнутого выявления фактуры "доски", соединения травления и печати тиснением. К О. обращаются такие значит. художники 20 в., как П. Пикассо во Франции, Ф. Брэнгвин в Великобритании, К. Кольвиц в Германии, Дж. Моранди в Италии. Сов. О. представлен творчеством целой плеяды значит. мастеров. Среди них - И. А. Фомин, И. И. Нивинский, А. И. Кравченко, Г. С. Верейский, Д. И. Митрохин, Г. Ф. Захаров, М. Г. Дерегус, Р. М. Ги-бавичюс и др. Особенно большое место О. занимает в графике Советской Эстонии (Э. Окас, А. Кютт, В. Толли и др.) Подробнее об истории О. см. в ст. Гравюра. К. В. Безменова.

Лит.: Масютин В., Гравюра и литография, М.- Берлин, 1922; Фалилеев В.Д., Офорт и гравюра резцом, М.- Л., 1925; Айзеншер И. Я., Техника офорта. Гравюра на металле, Л.- М., 1939; Кристеллер П., История европейской гравюры. XV - XVIII века, пер. с нем., [Л.], 1939; Очерки по истории и технике гравюры, [Сб. ст.], М., 1941; Корнилов П. Е., Офорт в России 17 - 20 веков, М., 1953; В и п п е р Б. Р., Графика, в его кн.: Статьи об искусстве, М., 1970; Звонцов В., Ш и с т к о В., Офорт, М., 1971.

"ОФРАНЦУЖЕННЫЕ" (исп. afrancesados), сторонники франц. господства в Испании в период оккупации страны войсками Наполеона I, сотрудничавшие с оккупантами. Состав "О." был пёстрым - от противников исп. абсолютизма, надеявшихся на проведение прогрессивных реформ, до карьеристов, рассчитывавших на служебные и материальные выгоды. Широкие нар. массы относились к "О." враждебно; имели место случаи убийства их толпой. Кадисские кортесы (1810-13), а позднее - вернувшийся в 1814 из франц. плена Фердинанд VII серьёзно ограничивали "О." в правах. Однако применение постановлений против "О." постепенно смягчалось. В 1820 они были амнистированы.

ОФСЕТНАЯ ПЕЧАТЬ (англ. offset), способ печатания, при к-ром краска с печатной формы передаётся под давлением на промежуточную эластичную поверхность резинового полотна, а с неё на бумагу или др. печатный материал. Принцип О. п. предложен в 1905 в США, когда была создана первая офсетная печатная машина. Обычно назв. "О. п." объединяет процессы печатания с форм плоской печати, к-рые основаны на избирательном смачивании печатающих элементов краской, а пробельных - водным раствором, что достигается благодаря различным молекулярно-поверхностным свойствам отд. участков формы. В процессе печатания форму попеременно смачивают водным раствором и закатывают краской, после чего вводят под давлением в контакт с поверхностью резиновой пластины, а последнюю - в контакт с бумагой и получают отпечаток. Таким образом происходит двукратная передача изображения и бумага не входит в непосредственный контакт с печатной формой, что позволяет резко сократить давление, необходимое при печатании, а следовательно, и износ формы, увеличить скорость печатания и улучшить качество воспроизведения.

Технология О. п. основана на применении фотомеханич. методов и электронной техники в формных процессах, а также использовании средств механизации и автоматизации при изготовлении форм и печатании. Офсетные печатные формы изготавливаются на алюминиевых или цинковых пластинах толщиной 0,35-0,8 мм, поверхность к-рых подвергают механич. обработке (зернению) для получения равномерно матовой поверхности. Печатающие и пробельные элементы на поверхности пластин образуются путём создания различных по молекулярно-поверхностным свойствам плёнок, устойчиво воспринимающих влагу или краску. Это т. н. монометаллич. формы. Алюминиевые пластины для увеличения адсорбционной способности и повышения износостойкости поверхности подвергают комплексной электрохимич. подготовке на автоматизиров. гальванолиниях. Применяются также способы изготовления форм на полиметаллич. пластинах, основанные на использовании двух металлов с разными молекулярно-поверхностными свойствами: меди для создания устойчивых печатающих элементов и никеля (или хрома, нержавеющей стали) - для пробельных. Высокие гидрофильность и износостойкость пробельных элементов позволяют применять полиметаллич. формы при печатании изданий большими тиражами на высокоскоростных печатных машинах. Полиметаллич. пластины обычно изготавливают на алюминиевой или стальной основе и гальванич. путём наносят на всю поверхность пластины плёнки меди толщиной до 10 мкм и никеля или хрома толщиной 1-3 мкм.

Печатающие элементы на монометаллич. или полиметаллич. пластинах создаются фотохимич. способом путём копирования изображения через негатив или диапозитив на светочувствит. копировальный слой. Такие слои изготавливают из высокомолекулярных соединений (альбумин, камедь сибирская лиственница, поливиниловый спирт и др.) и хромовых солей, или диазосоединений, с введением плёнкообразующих веществ или фотополимеров. Продукты фотохимич. реакции хромовых солей обладают дубящим действием. При копировании на освещённых участках слой дубится и теряет способность растворяться в воде. С неосвещённых участков, защищённых непрозрачными элементами негатива или диапозитива, слой удаляется при проявлении, и на пластине создаётся изображение - печатающие элементы. Более широко используются копировальные слои на диазосоединениях, в к-рых под действием света происходит фотохимич. распад в освещённых местах и слой удаляется с этих участков пластины при проявлении. В копировальных слоях из фотополимеров под действием света на освещённых участках происходит полимеризация слоя и потеря растворимости в воде. С неосвещённых участков слой удаляется при проявлении. Копировальный слой на диазосоединениях и фотополимеры, нанесённые тонким слоем на металлич. пластины (моно- или полиметаллич.), длительное время (более года) не изменяют свойств, что позволяет производить подготовку металлов и предварительное очувствление пластин на специализиров. предприятиях.

При изготовлении форм на предварительно очувствлённых пластинах печатающие элементы на монометалле создаются на копировальном слое, защищённом при копировании непрозрачными участками диапозитива и оставшимися после проявления копии (рис. 1). На полиметаллич. пластинах копировальный слой после проявления удаляется с печатающих элементов и остаётся как временная защита на пробельных участках. Затем производят химич. или электрохимич. травление верхнего металла (никеля или хрома) до слоя меди, после чего удаляют защитный слой с пробельных элементов. В этом случае печатающие элементы создаются на поверхности-меди, а пробельные - на никеле или хроме (рис. 2). При всех способах изготовления форм после создания печатающих элементов производят обработку пробельных элементов гидрофилизующим раствором для придания им устойчивых гидрофильных свойств.
[1902-3.jpg]

Рис. 1. Схема процесса изготовления монометаллической печатной формы на зернёном алюминии: а - предварительно очувствлённая пластина; б - копирование диапозитива; в - копия до проявления (диазослой под действием света разрушен на пробельных элементах); г - копия после проявления; д - готовая форма; 1 - зернёная алюминиевая пластина; 2 - копировальный слой на диазосоединениях; 3 - диапозитив; 4 - печатная краска на печатающих элементах; 5 - водная плёнка на пробельных элементах.

[1902-4.jpg]

Рис. 2. Схема процесса изготовления полиметаллической печатной формы: а- предварительно очувствлённые полиметаллические пластины; б - копирование через диапозитив; в - проявленная копия (копировальный слой на пробельных элементах задублен под действием света и удалён с печатающих элементов); г - после удаления слоя хроме с печатающих элементов путём травления; д - после удаления задубленного копировального слоя; е - печатная форма; 1 - пластина углеродистой стали (основа); 2 - медь; 3 - хром; 4 - копировальный слой; 5 -диапозитив; 6 - печатная краска на печатающих элементах; 7 - водная плёнка на пробельных элементах.

Отдельные операции процесса изготовления монометаллич. форм (проявление, промывка, сушка) проводятся на механизиров. установках, процессы обработки копии и изготовление полиметаллич. форм - на механизиров. линиях.

О. п. осуществляется на офсетных машинах (см. Печатная машина). За каждый рабочий цикл машины происходит увлажнение печатной формы, накатывание краски на печатающие элементы, подача бумаги, собственно печатание и вывод готового оттиска на приёмный стол.

О. п. получила широкое применение благодаря механизации формных процессов, высокой производительности печатных машин, возможности воспроизведения всех типов изданий.

Лит.: Синяков Н.И., Технология изготовления фотомеханических печатных форм, М., 1966; Никанчикова, Попова А. Л., Технология офсетной печати, М., 1966; 3ахаров А.Г., Фуфаевский Д. А., Офсетные машины и работа на них, М., 1972. А. Л. Попова.
ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ, движение точки (или тела) по отношению к подвижной системе отсчёта, перемещающейся определённым образо
ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ, движение точки (или тела) по отношению к подвижной системе отсчёта, перемещающейся определённым образом относительно нек-рой другой, основной системы отсчёта, условно наз. неподвижной. Скорость точки в О. д. наз. относит, скоростью vОТ, а ускорение - относит, ускорением wОТ. Движение всех точек подвижной системы относительно неподвижной наз. в этом случае переносным движением, а скорость и ускорение той точки подвижной системы, через к-рую в данный момент времени проходит движущаяся точка,- переносной скоростью Спер и переносным ускорением wпер. Наконец, движение точки (тела) по отношению к неподвижной системе отсчёта наз. сложным или абсолютным, а скорость и ускорение этого движения - абс. скоростью vа и абс. ускорением wа. Напр., если с пароходом связать подвижную систему отсчёта, а с берегом - неподвижную, то для шара, катящегося по палубе парохода, движение по отношению к палубе будет О. д., а по отношению к берегу - абсолютным. Соответственно скорость и ускорение шара в первом движении будут vОТ И wОТ, а во втором - vа И wa.

Движение же всего парохода по отношению к берегу будет для шара переносным движением, а скорость и ускорение той точки палубы, к-рой в данный момент касается шар, будут vпер и wпер (шар рассматривается как точка). Зависимость между этими величинами даётся в клас-сич. механике равенствами:

vа = vот + vпер, wа = wот +wпер+wкор, (1)

где wкор - Кориолиса ускорение. Формулами (1) широко пользуются в кинематике при изучении движения точек и тел.

В динамике О. д. наз. движение по отношению к неинерциальной системе отсчёта, для к-рой законы механики Ньютона несправедливы. Чтобы ур-ния О. д. материальной точки сохранили тот же вид, что и в инерциальной системе отсчёта, надо к действующей на точку силе взаимодействия с другими телами F присоединить т. н. переносную силу инерции Jпep = - mwпep и Кориолиса силу инерции Jкор = - mwкор, где m - масса точки. Тогда
[1850-1.jpg]

При О. д. системы материальных точек аналогичные ур-ния составляются для всех точек системы. Этими уравнениями пользуются для изучения О. д. под действием сил различных механич. устройств (в частности, гироскопов), устанавливаемых на подвижных основаниях (кораблях, самолётах, ракетах), а также для изучения движения тел по отношению к Земле в случаях, когда требуется учесть её суточное вращение.

Лит. см. при статьях Кинематика и Дикалика. С. М. Торг.

ОТНОСИТЕЛЬНОЕ ОТВЕРСТИЕ, отношение диаметра действующего отверстия объектива к его фокусному расстоянию. Квадрат О. о. определяет освещённость в плоскости изображения и часто наз. светосилой объектива.

ОТНОСИТЕЛЬНОЕ ПЕРЕНАСЕЛЕНИЕ, относительный избыток рабочего населения при капитализме по сравнению со спросом на рабочую силу со стороны капиталистов. См. статьи Промышленная резервная армия труда, Безработица, Всеобщий закон капиталистического накопления .

ОТНОСИТЕЛЬНОЕ УХУДШЕНИЕ ПОЛОЖЕНИЯ ПРОЛЕТАРИАТА, см. в ст. Абсолютное и относительное ухудшение положения пролетариата,

ОТНОСИТЕЛЬНОСТИ ПРИНЦИП, один из наиболее фундаментальных физ. законов, согласно к-рому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе, находящейся в состоянии равномерного прямолинейного движения. Состояние движения или покоя определяется здесь по отношению к произвольно выбранной инерциалъной системе отсчёта; физически эти состояния полностью равноправны. Эквивалентная формулировка О. п.: законы физики имеют одинаковую форму во всех инерц. системах отсчёта. О. п. вместе с постулатом о независимости скорости света в вакууме от движения источника света легли в основу специальной (частной) теории относительности А. Эйнштейна (см. Относительности теория). И. Ю. Кобзарев.

ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ, физическая теория, рассматривающая пространственно-временные свойства физ. процессов. Закономерности, устанавливаемые О. т., являются общими для всех физ. процессов, поэтому часто о них говорят просто как о свойствах пространства-времени. Как было установлено А. Эйнштейном, эти свойства зависят от гравитац. полей (полей тяготения), действующих в данной области пространства-времени. Свойства пространства-времени при наличии полей тяготения исследуются в общей теории относительности (ОТО), наз. также теорией тяготения. В частной теории относительности рассматриваются свойства пространства-времени в приближении, в к-ром эффектами тяготения можно пренебречь. Логически частная О. т. есть частный случай ОТО, откуда и происходит её название. Исторически развитие теории происходило в обратном порядке; частная О. т. была сформулирована Эйнштейном в 1905, окончательная формулировка ОТО была дана им же в 1916. Ниже излагается частная О. т., наз. в литературе также теорией относительности Эйнштейна, просто О. т., или специальной теорией относительности (история её возникновения изложена в последнем разделе).

Основные черты теории относительности

Явления, описываемые О. т. и называемые релятивистскими (от лат. relatio - отношение), проявляются при скоростях движения тел, близких к скорости света в вакууме с=(2,997924562±0,000000011)X1010см/сек. При таких скоростях (называемых релятивистскими) зависимость энергии Е тела от его скорости v описывается уже не формулой классич. механики Екин = mv2/2, а релятивистской формулой
[1850-2.jpg]

Масса т, входящая в эту формулу, в О. т. наз. также массой покоя. Из (1) видно, что энергия тела стремится к бесконечности при скорости v, стремящейся к с, поэтому если масса покоя не равна нулю, то скорость тела всегда меньше с, хотя при Е " тс2 она может стать сколь угодно близкой к с. Это непосредственно наблюдается на ускорителях протонов и электронов, в которых частицам сообщаются энергии, много большие тс2, и поэтому они движутся со скоростью, практически равной с. Со скоростью света всегда движутся частицы, масса покоя к-рых равна нулю (фотоны - кванты света, нейтрино). Скорость с является предельной скоростью передачи любых взаимодействий и сигналов из одной точки пространства в другую.

Существование предельной скорости вызывает необходимость глубокого изменения обычных пространственно-временных представлений, основанных на повседневном опыте. Рассмотрим след, мысленный опыт. Пусть в вагоне, движущемся со скоростью v относительно полотна жел. дороги, посылается световой сигнал в направлении движения. Скорость сигнала для наблюдателя в вагоне равна с. Если бы длины и времена, измеряемые любым наблюдателем, были одинаковы, то выполнялся бы закон сложения скоростей классич. механики и для наблюдателя, стоящего у полотна, скорость сигнала была бы равна с + v, т. е. была бы больше предельной. Противоречие устраняется тем, что в действительности с точки зрения наблюдателя, относительно к-рого физич. система движется со скоростью v, все процессы в этой системе замедляются в корень из 1-v2/с2 раз (это явление наз. замедлением времени), продольные (вдоль движения) размеры тел во столько же раз сокращаются и события, одновременные для одного наблюдателя, оказываются неодновременными для другого, движущегося относительно него (т. н. относительность одновременности). Учёт этих эффектов приводит к закону сложения скоростей, при к-ром предельная скорость оказывается одинаковой для всех наблюдателей.

Характерное для О. т. явление замедления времени может принимать огромные масштабы. В опытах на ускорителях и в космических лучах образуются распадающиеся (нестабильные) частицы, движущиеся со скоростью, близкой к скорости света. В результате замедления времени (с точки зрения земного наблюдателя) времена их распада и, следовательно, проходимые ими (от рождения до распада) расстояния увеличиваются в тысячи и десятки тысяч раз по сравнению с теми, к-рые частицы пролетали бы, если бы эффект замедления времени отсутствовал.

Из релятивистской формулы для энергии следует, что при малых скоростях (м<<с) энергия тела равна
[1850-3.jpg]

Второй член справа есть обычная кинетич. энергия, первый же член показывает, что покоящееся тело обладает запасом энергии Е0=тс2, наз. энергией покоя (т.н. принцип эквивалентности энергии и массы, или принцип эквивалентности Эйнштейна).

В ядерных реакциях и процессах превращений элементарных частиц значит, часть энергии покоя может переходить в кинетич. энергию частиц. Так, источником энергии, излучаемой Солнцем, является превращение четырёх протонов в ядро гелия; масса ядра гелия меньше массы четырёх протонов на 4,8•10-26г, поэтому при каждом таком превращении выделяется 4,3•10-5 эрг кинетич. энергии, уносимой излучением. За счёт излучения Солнце теряет в 1 сек 4•107 т своей массы.

О. т. подтверждена обширной совокупностью фактов и лежит в основе всех совр. теорий, рассматривающих явления при релятивистских скоростях. Уже последоват. теория электромагнитных, в частности оптических, явлений, описываемых классич. электродинамикой (см. Максвелла уравнения), возможна только на основе О. т. Теория относительности лежит также в основе квантовой электродинамики, теорий сильного и слабого взаимодействий элементарных частиц. Законы движения тел при релятивистских скоростях рассматриваются в релятивистской механике, к-рая при скоростях v"с переходит в классическую механику Ньютона. Квантовые законы движения релятивистских микрочастиц рассматриваются в релятивистской квантовой механике и квантовой теории поля.

Принцип относительности и другие принципы инвариантности

В основе О. т. лежит принцип относительности, согласно к-рому в физич. системе, приведённой в состояние свободного равномерного и прямолинейного движения относительно системы, условно наз. "покоящейся", для наблюдателя, движущегося вместе с системой, все процессы происходят по тем же законам, что и в "покоящейся" системе. Говорят, что движущаяся система получается из "покоящейся" преобразованием движения и что принцип относительности выражает инвариантность (независимость) законов природы относительно преобразований движения.

Справедливость принципа относительности означает, что различие между состояниями покоя и равномерного прямолинейного движения не имеет физич. содержания. Если физич. система В движется равномерно и прямолинейно (со скоростью V) относительно системы А, то с тем же правом можно считать, что А движется относительно В (со скоростью-V). Термин "принцип относительности" связан с тем, что если преобразованию движения подвергнуть систему движущихся тел, то все относительные движения этих тел останутся неизменными.

Наряду с принципом относительности из опыта известны и др. принципы инвариантности, или, как ещё говорят, симметрии, законов природы. Любой физич. процесс происходит точно так же если осуществить его в любой др. точке пространства; эта симметрия выражает равноправие всех точек пространства, однородность пространства;

если систему, в к-рой происходит процесс, повернуть на произвольный угол; эта симметрия выражает равноправие всех направлений в пространстве, изотропию пространства;

если повторить процесс через нек-рый промежуток времени; эта симметрия выражает однородность времени.

Т. о., имеет место инвариантность законов природы по отношению к четырём типам преобразований: 1) переносу в пространстве, 2) вращению в пространстве, 3) сдвигу во времени, 4) преобразованию движения. Симметрии 1-4 выполняются точно только в изолированной от внешних воздействий системе, т. е. если можно пренебречь воздействием на систему внешних факторов; для реальных систем они справедливы лишь приближённо.

Изучение свойств преобразований 1-2 составляет предмет евклидовой геометрии трёхмерного пространства, если рассматривать её как физич. теорию, описывающую пространств, свойства физич. объектов (при этом под переносом следует понимать преобразование параллельного переноса).

При скоростях тел v, сравнимых со скоростью с, обнаруживается тесная связь и матем. аналогия между преобразованиями 1, 3 и 2, 4. Это даёт основание говорить об О. т., в к-рой все преобразования 1-4 следует рассматривать совместно, как о геометрии пространства-времени. Содержанием О. т. является рассмотрение свойств преобразований 1-4 и следствий из соответствующих принципов инвариантности. Математически О. т. является обобщением геометрии Евклида - геометрией четырёхмерного Минковского пространства.

Принцип относительности был известен (и справедлив) в классич. механике, но свойства преобразований движения при v<
Осн. понятие О. т. - точечное событие, т. е. нечто, происходящее в данной точке пространства в данный момент времени (напр., световая вспышка, распад элементарной частицы). Это понятие является абстракцией - реальные события всегда имеют нек-рую протяжённость в пространстве и во времени и могут рассматриваться как точечные только приближённо. Любой физический процесс есть последовательность событий (С)-C1, С2, ..., Сn, ... . Справедливость симметрии 1-4 означает, что наряду с последовательностью (С) законы природы допускают существование бесконечного числа др. последовательностей (С*), к-рые получаются из (С) соответствующим преобразованием и различаются положением событий в пространстве и времени, но имеют одинаковую с (С) внутр. структуру. Напр., в случае симметрии 4 процесс (С) можно наглядно описать как происходящий в стоящем на земле самолёте, а процесс (С*)- как такой же процесс, происходящий в самолёте, летящем с постоянной скоростью (относительно земли); различным скоростям и направлениям движения соответствуют различные последовательности (С*). Преобразования, переводящие одну последовательность событий в другую, наз. активными (в отличие от пассивных преобразований, к-рые связывают координаты одного и того же события в двух системах отсчёта; см. ниже). Совокупность этих преобразований должна удовлетворять определённым свойствам. Прежде всего последоват. применение любых двух преобразований должно представлять собой одно из возможных преобразований [напр., переход от системы (1) к системе (2), а затем от системы (2) к системе (3) эквивалентен переходу (1)-(3)]. Кроме того, для каждого преобразования должно существовать обратное преобразование, так что последоват. применение обоих преобразований даёт тождественное (единичное) преобразование, являющееся одним из возможных преобразований системы. Это означает, что совокупность рассматриваемых преобразований (1-4) должна составлять группу в математич. смысле. Эта группа наз. группой Пуанкаре (назв. предложеноЮ. Вигнером). Преобразования группы Пуанкаре носят универсальный характер: они действуют одинаково на события любого типа. Это позволяет считать, что они описывают свойства пространства-времени, а не свойства конкретных процессов. Свойства преобразований Пуанкаре могут быть описаны различными способами (так же, как можно описывать различными способами свойства движений в трёхмерном пространстве); наиболее простое описание получается при использовании инерциалъных систем отсчёта и связанных с ними часов. Роль инерц. систем отсчёта (и. с. о.) в О. т. такая же, как роль прямоугольных декартовых координат в геометрии Евклида.

Инерциальные системы отсчёта

С той степенью точности, с какой свойства данной области пространства-времени описываются частной О. т., можно ввести и. с. о., в к-рых описание пространственно-временных закономерностей О. т. принимает особенно простую форму. Под системой отсчёта в этом случае можно подразумевать жёсткую систему твёрдых тел (или её мысленное продолжение), по отношению к к-рой определяются положения событий, траектории тел и световых лучей. Любая система отсчёта, движущаяся относительно данной и. с. о. равномерно и прямолинейно без вращения, также будет инерциальной, а система отсчёта, вращающаяся или движущаяся ускоренно, уже не будет и. с. о. Следовательно, и. с. о. образуют выделенный класс систем отсчёта. В и. с. о. справедлив закон инерции, т. е. свободная (не испытывающая воздействий др. тел) частица движется в и. с. о. прямолинейно и (при принятой синхронизации часов; см. ниже) равномерно. Требование выполнения закона инерции может быть принято как определение и. с. о. Первый закон Ньютона может рассматриваться при этом как утверждение о существовании таких систем отсчёта. Все и. с. о. равноправны; это равноправие является непосредственным выражением принципа относительности.

Степень инерциалыгости системы отсчёта зависит от свойств гравитац. полей, действующих в рассматриваемой области пространства-времени. Количеств, критерии применимости частной О. т. и инерциальности систем отсчёта рассматриваются в ОТО.

В области пространства-времени, в к-рой справедлива частная О. т., можно пользоваться и неинерц. системами отсчёта (так же, как можно пользоваться криволинейными координатами в геометрии Евклида), но при этом описание свойств пространства-времени оказывается более сложным.

В данной и. с. о. необходимо определить способ измерения времени и координат. В и. с. о. трёхмерная пространств, геометрия- евклидова, если прямые определить, напр., как траектории световых лучей, а расстояния измерять твёрдыми масштабами. Поэтому в данной и. с. о. можно ввести декартовы прямоугольные координаты х, у, z. Для определения времени t события можно принять, что в той точке, где оно произошло, находятся часы, покоящиеся в данной и. с. о. Если события происходят в разных точках А, В, то для сравнения их времён нужно синхронизировать часы в A и В, т. е. определить значение того, что часы в Л и В показывают одинаковое время. Обычное определение таково: пусть в момент tA по часам в A посылается сигнал в В, а в момент его прибытия в В посылается такой же сигнал из В в Л; если сигнал пришёл в Л в момент t'A, то принимается, что сигнал пришёл в В в момент tв = (tА + t'А)/2 и соответственно устанавливаются часы в В. При таком определении времена распространения сигнала из Л в В и из В в А одинаковы и равны (t'А - tА)/2. Сигналами могут служить световые вспышки, звуковые сигналы (если среда, в к-рой они распространяются, покоится по отношению к данной системе отсчёта), выстрелы из двух одинаковых орудий, установленных в Л и В, и т. д., требуется лишь, чтобы условия передачи сигнала из Л в В и из В в Л были одинаковыми. Целесообразность такого определения времени связана с тем, что в любой и. с. о. отсутствует к.-л. физически выделенное направление; описанная процедура синхронизации часов симметрична относительно Л и В и поэтому не вносит анизотропии в способ описания. Отсутствие выделенного направления проявляется в том, что синхронизация любыми сигналами приводит к одному и тому же результату; к такому же результату приводит медленный (с v << с) перенос часов из Л в В. При практич. измерениях времён и координат используются многочисл. косвенные методы, при условии, что они дают такой же результат, как и описанные выше процедуры. В любой другой и. с. о. координаты и время измеряются с помощью таких же масштабов и часов, синхронизируемых таким же способом. Заранее не очевидно, что времена, определённые таким образом в двух различных и. с. о., будут одними и теми же, и они действительно оказываются различными. После того как синхронизация произведена, могут измеряться скорости частиц и сигналов в данной и. с. о., в частности скорость распространения световых сигналов. Скорость света в любой и. с. о. всегда равна с.

Преобразования Лоренца

Рассмотренные выше активные преобразования непосредственно связаны с пассивными преобразованиями, описывающими связь между координатами и временем данного события в двух различных и. с. о. В силу принципа относительности безразлично, сообщить ли телу скорость V по отношению к данной и. с. о. L или перейти к системе отсчёта L', движущейся со скоростью V относительно L,- закон преобразования координат и времени должен быть одним и тем же.

Вследствие справедливости симметрии 1-4, преобразования, связывающие координаты и времена событий х, у, z, t и х', у', z', t', измеренные в двух и. с. о. L и L', должны быть линейными. Из симметрии 1-4 и требования, чтобы преобразования составляли группу, можно получить вид этих преобразований. Если система отсчёта L' движется относительно L со скоростью V, то при надлежащем выборе осей координат и начал отсчёта времени в L и Z' (оси х и х' совпадают и направлены по V, оси у и у', г и г' соответственно параллельны, начала координат О и О' совпадают при t = 0 и часы в L' установлены так, что при t = 0 часы в О' показывают время f = 0) преобразования координат и времени имеют вид:
[1850-4.jpg]

где с - произвольная постоянная, имеющая смысл предельной скорости движения (равной скорости света в вакууме). Эта постоянная может быть определена из любого эффекта О. т. (напр., замедления времени распада быстрого я-мезона). Справедливость кинематики и динамики, основанных на преобразованиях (2), подтверждена неисчислимой совокупностью экспериментальных фактов.

Преобразования Лоренца (2) вместе с преобразованиями вращения вокруг начала координат образуют группу Лоренца; добавление к ней сдвигов во времени t' = t + а и в пространстве х' = х + b (где а, Ь - произвольные постоянные размерности времени и длины) даёт группу Пуанкаре.

Из принципа относительности вытекает, что физич. законы должны иметь одинаковую форму во всех и. с. о.; следовательно, они должны сохранять свой вид при преобразованиях Лоренца. Это требование наз. принципом (постулатом) релятивистской инвариантности, или лоренц-инвариантности (лоренц-ковариантности), законов природы.

Из преобразований Лоренца вытекает релятивистский закон сложения скоростей. Если частица или сигнал движется в L по оси х со скоростью и, то в момент tx = vt и скорость частицы v' = = x'/t', измеряемая в системе L', равна:
[1850-5.jpg]

Эта формула отражает осн. черту релятивистской кинематики - независимость скорости света от движения источника. Действительно, если скорость света, испущенного покоящимся в нек-рой и. с. о. L источником, есть с, v = с, то из закона сложения скоростей (2) получаем, что измеренная в и. с. о. L' скорость света v' также равна с. Так как направление оси х произвольно, то отсюда следует независимость скорости света от движения источника. Это свойство скорости света однозначно определяет вид преобразований Лоренца: постулировав независимость скорости света от движения источника, однородность пространства и времени и изотропию пространства, можно вывести преобразования Лоренца.

Особая роль скорости света в О. т. связана с тем, что она является предельной скоростью распространения сигналов и движения частиц, достигаемой при энергии частицы, стремящейся к бесконечности, или массе, стремящейся к нулю; если бы масса покоя то фотона оказалась хотя и очень малой, но отличной от нуля (экспериментально установлено, что my < 4*10-21 тe, где тe - масса электрона), то скорость света была бы меньше предельной. Чтобы предельная скорость вообще могла существовать, она не должна зависеть от движения источника частиц.

Из преобразований Лоренца легко получить осн. эффекты О. т.: относительность одновременности, замедление времени, сокращение продольных размеров движущихся тел. Действительно, события 1, 2, одновременные в одной и. с. о. L : t1 = t2 и происходящие в разных точках х\, х2, оказываются неодновременными в другой и. с. о. L':t1'-t2'=(х2-х1)*V/c2*на корень из(1-V/c2) не равно 0. Далее, когда часы, покоящиеся в Z. в точке х = 0, показывают время t, то время t' по часам в L', пространственно совпадающим с часами в Z, в этот момент времени, есть
[1850-6.jpg]

т. е. с точки зрения наблюдателя в L' часы в L отстают. В силу принципа относительности отсюда следует, что с точки зрения наблюдателя в L' все процессы в L. замедлены в такое же число раз.

Легко получить также, что размеры l всех тел, покоящихся в L, оказываются при измерении в L' сокращёнными

в корень из(1 - V2/c2) раз в направлении V:
[1850-7.jpg]

В частности, продольный диаметр сферы, движущейся со скоростью v относительно L', будет при измерении в L' в корень из (1-v2/с2)раз короче, чем поперечный. (Заметим, что это сокращение не обнаружилось бы на мгновенной фотографии сферы: из-за различного запаздывания световых сигналов, приходящих от разных точек сферы, её видимая форма остаётся прежней.)

Для и. с. о. пространственно-временные эффекты, определяемые преобразованиями Лоренца, относительны: с точки зрения наблюдателя в L замедляются все процессы и сокращаются все продольные масштабы в L'. Однако это утверждение несправедливо, если хотя бы одна из систем отсчёта неинерциальна. Если, напр., часы 1 перемещаются относительно L из Л в В со скоростью с, а потом из В в Л со скоростью - v, то они отстанут по сравнению с покоящимися в А часами 2 в корень из (1-v2/c2) раз; это можно обнаружить прямым сравнением, так что эффект абсолютен. Он должен иметь место для любого процесса; напр., близнец, совершивший путешествие со скоростью v, вернётся в корень из (1-v2/c2) раз более молодым, чем его брат, остававшийся неподвижным в и. с. о. Это явление, получившее назв. "парадокса близнецов", в действительности не содержит парадокса: система отсчёта, связанная с часами 1, не является ннерциаль-ной, т. к. эти часы при повороте в В испытывают ускорение по отношению к инерциальной системе; поэтому часы 1 и 2 неравноправны.

При малых скоростях v преобразования Лоренца переходят в преобразования Галилея х'=х-vt, у'=у, z'=z, t'=t, к-рые описывают связь между картинами различных наблюдателей, известную из повседневного опыта: размеры предметов и длительность процессов одинаковы для всех наблюдателей.

Преобразования Пуанкаре оставляют инвариантной величину, наз. интервалом SAB между событиями Л, В, к-рая определяется соотношением:
[1850-8.jpg]

Математически инвариантность s аналогична инвариантности расстояния при преобразованиях движения в евклидовой геометрии. Величины ct, х, у, z можно рассматривать как четыре координаты события в четырёхмерном пространстве Минковского: x0 = ct, х1 = х, х2 = у, х3 = z, к-рые являются компонентами четырёхмерного вектора.

Если вместо х0 ввести мнимую координату x4 = ix0 = ict, то произвольное преобразование Пуанкаре можно записать в виде, полностью аналогичном формуле, описывающей вращения и сдвиги в трёхмерном пространстве.

Вследствие того, что квадраты разностей временных и пространств, координат входят в (6) с разными знаками, знак s2 может быть различным; геометрия такого пространства отличается от евклидовой и наз. псевдоевклидовой. В такой геометрии интервалы разделяются на три типа: s2<0, s2>О и s2=0. Интервалы первого и второго типа наз. соответственно времени-подобными н пространственноподобными. Если s2>=0, знак tA-tBне зависит от системы отсчёта. Это тесно связано с принципом причинности. Действительно, если s2>=0 и (для определённости) tA
Если s2<0, то существует такая система отсчёта, в к-рой события А и В одновременны; в этой системе s2=-l2, где l - обычное расстояние. При s2 > О существует система отсчёта, в к-рой события А и В происходят в одной точке.

В классич. физике требование инвариантности законов физики относительно преобразований Лоренца означает, что любые физич. величины должны преобразовываться как скаляры, векторы или тензоры в пространстве Минковского. Правила вычислений с такими величинами даются тензорным исчислением. Использование тензорного исчисления позволяет записывать законы физики в таком виде, что их лоренц-инвариантность становится непосредственно очевидной.

Законы сохранения в теории относительности и релятивистская механика

В О. т., так же как в классич. механике, для замкнутой физич. системы сохраняется импульс р и энергия Е, Трёхмерный вектор импульса вместе с энергией образует четырёхмерный вектор импульса-энергии с компонентами Е/с, р, обозначаемый как (E;с,р). При преобразованиях Лоренца остаётся инвариантной величина

E2- (cp)2 = m2c4, (7) где от - масса покоя частицы. Из требований лоренц-инвариантности следует, что зависимость энергии и импульса от скорости имеет вид
[1850-9.jpg]

Энергия и импульс частицы связаны соотношением р = Ev/с2. Это соотношение справедливо также для частицы с нулевой массой покоя; тогда v = с и р = Е/с. Такими частицами, по-видимому, являются фотоны (у) и электронные и мюонные нейтрино. Из (8) видно, что импульс и энергия частицы с m не равно 0 стремятся к бесконечности при v -> с.

Обсуждалась возможность существования объектов, движущихся со скоростью, большей скорости света (т. н. тахионов). Формально это не противоречит лоренц-инвариантности, но приводит к серьёзным затруднениям с выполнением требования причинности.

Масса покоя т не является сохраняющейся величиной. В частности, в процессах распадов и превращений элементарных частиц сумма энергий и импульсов частиц сохраняется, а сумма масс покоя меняется. Так, в процессе аннигиляции позитрона и электрона е++е-->2у сумма масс покоя изменяется на 2 mе .

В системе отсчёта, в к-рой тело покоится (такая система отсчёта наз. собственной), его энергия (энергия покоя) есть Ео = тс2. Если тело, оставаясь в покое, изменяет своё состояние, получая энергию в виде излучения или тепла, то из релятивистского закона сохранения энергии следует, что полученная телом энергия ДЯ связана с увеличением его массы покоя соотношением дельта Е = дельта mc2. Из этого соотношения, названного Эйнштейном принципом эквивалентности массы и энергии, следует, что величина E0 = mс2 определяет максимальную величину энергии, к-рая может быть "извлечена" из данного тела в системе отсчёта, в к-рой оно покоится.

Для движущегося тела величина
[1850-10.jpg]

определяет его кинетич. энергию. При v<<с (9) переходит в нерелятивистское выражение Екин=mv2/2, при этом импульс равен р = mv. Из определения Eкин следует, что для любого процесса в изолированной системе выполняется равенство:
[1850-11.jpg]

согласно к-рому увеличение кинетич. энергии пропорционально уменьшению суммы масс покоя. Это соотношение широко используется в ядерной физике; оно позволяет предсказывать энерговыделение в ядерных реакциях, если известны массы покоя участвующих в них частиц. Возможность протекания процессов, в к-рых происходит превращение энергии покоя в кинетич. энергию частиц, ограничена др. законами сохранения (напр., законом сохранения барионного заряда, запрещающим процесс превращения протона в позитрон и у-квант). Иногда вводят массу, определяемую как
[1850-12.jpg]

при этом связь между импульсом и энергией имеет тот же вид, что и в ньютоновской механике: р = mдвижv. Определённая таким образом масса отличается от энергии тела лишь множителем 1/с2. (В теоретич. физике часто выбирают единицы измерения так, что с = 1, тогда E = mдвиж)

Осн. уравнения релятивистской механики имеют такой же вид, как второй закон Ньютона и уравнение энергии, только вместо нерелятивистских выражений для энергии и импульса используются выражения (8):
[1850-13.jpg]

где F - сила, действующая на тело. Для заряженной частицы, движущейся в электромагнитном поле, F есть Лоренца сила.

Теория относительности и эксперимент

Предположения о точечных событиях, справедливости принципа относительности, однородности времени и однородности и изотропии пространства с неизбежностью приводят к О. т. При этом абстрактно допустим предельный случай, соответствующий с = бесконечности, однако такая возможность исключена экспериментально: доказано с огромной точностью (см. ниже), что предельная скорость с есть скорость света в вакууме (её значение дано в начале статьи).

Каковы границы применимости О. т.? Отклонения от пространственно-временной геометрии О. т., связанные с гравитацией, наблюдаемы и рассчитываются в ОТО; никаких др. ограничений применимости О. т. пока не обнаружено, хотя неоднократно высказывались подозрения, что на очень малых расстояниях (напр., ~10-17 см) понятие точечного события, а следовательно, и О. т. могут оказаться неприменимыми (см., напр., Квантование пространства-времени).

Предположение о лоренц-инвариантности и точечности событий (означающей локальность взаимодействий) лежит в основе всех совр. теорий, в к-рых существен релятивизм. Справедливость квантовой электродинамики электронов и мюонов, а следовательно, и О. т. установлена вплоть до расстояний 10-15 см. При энергиях порядка масс этих частиц согласие квантовой электродинамики с опытом установлено с относит, точностью, несколько лучшей, чем 10-5; с точностью того же порядка должна быть справедлива и механика О. т.

Релятивистские законы сохранения применяются при исследованиях превращений элементарных частиц, вызванных сильным, слабым и электромагнитным взаимодействиями; отсутствие противоречий подтверждает справедливость этих законов. Всё, что известно о названных взаимодействиях, согласуется с представлением об их лоренц-инвариантности.

Предположение о невозможности сверхсветовых сигналов, вытекающее из О. т., лежит в основе дисперсионных методов, широко используемых в теории сильных взаимодействий (см. также Квантовая теория поля)', их успех демонстрирует справедливость осн. представлений О. т.

Одним из наиболее ярких подтверждений справедливости релятивистской инвариантности явилось предсказание на её основе существования античастиц и их последующее открытие (см. Дирака уравнение, Античастицы).

Требование лоренц-инвариантности взаимодействий приводит при очень общих предположениях к т. н. СРТ-теореме, устанавливающей связь между свойствами частиц и античастиц. Эта связь выполняется на опыте для всех известных взаимодействий.

Неоднократно ставились опыты по прямой проверке осн. черт кинематики О. т. Независимость скорости света от движения источника проверена с наилучшей точностью в 1964 в опытах [Европ. центр ядерных исследований (ЦЕРН, Швейцария)], в к-рых использовались у-кванты от распада л°-мезона; при скорости Пи°v= 0,9997с относит, точность совпадения скорости Y-кванта с с составляла 10-4. Релятивистское замедление времени измерено в широком интервале скоростей с помощью поперечного Доплера эффекта и непосредственно по распадам элементарных частиц с точностью 1-5% . Неоднократно проверялась также формула тдвиж= m*корень из (l-v2/c2) наилучшая достигнутая точность - 5-10-4 (В. Мейер и др., 1963).

История частной теории относительности

Хотя О. т. в логич. смысле проста, путь, приведший к ней, был сложным. Справедливость принципа относительности для механических явлений и его связь с явлением инерции были поняты после появления теории Н. Коперника: отсутствие видимых проявлений движения Земли с неизбежностью приводило к заключению, что общее движение системы не сказывается на происходящих в ней механических явлениях. Уже в 16 в. это поясняли, описывая эксперименты на движущемся корабле. Классич. изложение принципа относительности было дано в 1632 Г. Галилеем: "Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех ... явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли .корабль или стоит неподвижно" (Галилей Г., Диалог о двух главнейших системах мира: птолемеевой и копернико-вой, М.- Л., 1948, с. 147). Принцип относительности широко использовался X. Гюйгенсом для решения задач механики.

Полная система законов движения для любой механич. системы была дана И. Ньютоном в "Началах" (1687). Ньютон, установив, что законы механики не могут быть справедливыми в любой системе отсчёта, ввёл понятия абс. пространства и абс. времени; по существу это были для него система отсчёта и временная переменная t, для к-рых выполнялись законы движения. Вопрос об измерении времени в механике Ньютона был простым, т. к. любые равномерно движущиеся часы годились для измерения t. Более сложным был вопрос об абс. пространстве. В механике Ньютона выполнялся принцип относительности. Согласно формулировке Ньютона, "относительные движения друг по отношению к другу тел, заключённых в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения" ("Математические начала натуральной философии", см. Крылов А. И., Собр. трудов, т. 7, 1936, с. 49). Поэтому нельзя было отличить покоящуюся в абсолютном пр