загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

ение анатомич. целости кости вследствие травмы. П. внутриутробного периода жизни плода крайне редки. Различают П. патологические (возникают на фоне изменённой предшествующим заболеванием структуры костной ткани) и травматические, "обычные"; закрытые и открытые, т. е. с наличием раны; без смещения или со смещением отломков кости; косые, поперечные и оскольчатые. Как правило, П.- результат действия чрезмерной для кости механкч. нагрузки в момент травмы. Реже встречаются т. н. хронические П. вследствие небольших, но длит. нагрузок. П. чаще всего возникают на верхней (около половины всех П.) и нижней (четверть-всех П.) конечностях, у мужчин - в 3-4 раза чаще, чем у женщин.

Признаки П.: сильная локальная боль после травмы, деформация, т. н. патологическая подвижность и нарушения функции конечности. Для определения локализации П., вида смещения отломков и выбора метода лечения необходима рентгенодиагностика. Разрушение при П. костной ткани и повреждение окружающих кость мягких тканей приводит к внутреннему или наружному (при открытом П.) кровотечению. При множеств. или тяжёлых открытых П. крупных костей возможно развитие травма-тич. шока. Сращение П.- биол. процесс образования мягкотканной, а затем на её месте костной мозоли, благодаря чему восстанавливаются целость кости и её механич. функция. Сроки сращения П. вариабильны, на них влияют наличие др. травм и П., тяжесть травмы мягких тканей в окружности П., величина смещения отломков, а также общее состояние организма и сопутствующие заболевания.

Лечение: первая помощь - иммобилизация отломков в зоне П. спец. шинами или подсобными средствами; при открытом П., травматич. шоке - срочная врачебная помощь; при сильном кровотечении из раны - кровоостанавливающий жгут; т. н. сопоставление отломков (в положение наиболее полного соприкосновения друг с другом) и иммобилизация в течение всего периода сращения П. обычно путём гипсовой повязки и скелетного вытяжения; см. также Остеосинтез. Осложнения П.- повреждение крупных сосудов и нервов, нагноение в зоне П., несращение П.- требуют спец. лечения.

Хрупкость кости в пожилом возрасте определяет частое возникновение П. при сравнительно небольших травмах. П. у детей благодаря большей гибкости кости нередко происходит в виде надлома без разобщения отломков (поднадкостничный П.), нередко вблизи суставов. Лечение П. у детей имеет особенности: чаще применяется сопоставление отломков с наложением гипсовой лонгеты, реже - скелетное вытяжение, очень редко - оперативное лечение.

Лит.: Каплан А. В., Закрытые повреждения костей и суставов, 2 изд., М., 1967; Уотсон-Джонс Р., Переломы костей и повреждения суставов, пер. с англ., М., 1972. В. Ф. Пожариский.

ПЕРЕМАГНИЧИВАНИЕ, изменение направления намагниченности ферро- или ферримагнитного образца на противоположное под действием внешнего магнитного поля (подробнее см. Гистерезис, Намагничивание ).

ПЕРЕМЕННАЯ, переменное, одно из осн. понятий математики и логики. Начиная с работ П. Ферма, Р. Декарта, И. Ньютона, Г. В. Лейбница и др. основоположников "высшей" математики под П. понимали нек-рую "величину", к-рая может "изменяться", принимая в процессе этого изменения различные "значения". Тем самым П. противопоставлялись "постоянным" (или константам)- числам или к.-л. др. "величинам", каждая из к-рых имеет единственное, вполне определённое значение (см. Переменные и постоянные величины). По мере развития математики и в ходе её обоснования представления о "процессах", "изменении величин" и т. п. тщательно изгонялись из матем. арсенала как "внематематические", в результате чего П. стала пониматься как обозначение для произвольного элемента рассматриваемой предметной области (напр., области натуральных чисел или действительных чисел), т. е. как родовое имя всей этой области (в отличие от констант - "собственных имён" для чисел или др. конкретных предметов рассматриваемой области). Этот пересмотр взглядов на понятие П. был тесно связан с перестройкой математики на базе множеств теории, завершившейся в кон. 19 в. При всей простоте и "естественности" такой перестройки она существенным образом опирается на т. н. абстракцию актуальной бесконечности, позволяющую рассматривать произвольные бесконечные множества в качестве "данных" ("завершённых", "готовых", "актуальных") объектов и применять по отношению к ним любые средства классич. логики, отвлекаясь от незавершённости и принципиальной незавершимости процесса образования такого множества. Трудности решения логич. проблем, связанных с принятием этой абстракции, делают понятной частичную "реабилитацию" старинных представлений о "переменных величинах"; при построении матем. теорий представители нек-рых школ (см. Математический интуиционизм, Конструктивное направление) предпочитают обходиться более слабой, но зато менее уязвимой в логич. отношении абстракцией потенциальной осуществимости, с точки зрения к-рой с бесконечными множествами как раз связываются представления о процессах их "порождения",-сколь угодно далеко заходящих, но никогда не завершающихся (см. Бесконечность в математике). При исследовании вопроса непротиворечивости различных областей математики на такую позицию фактически встаёт значит. большинство математиков и логиков (см. Метаматематика).

В формализованных языках (исчислениях, формальных системах) матем. логики П. наз. символы строго фиксированного вида, могущие при определённых условиях заменяться выражениями данного исчисления. Это относится к т. н. свободным (или значащим) П., примером к-рых может служить П. х в неравенстве х > 5, обращающемся при подстановке вместо л:, скажем, цифры (т. е. обозначения для числа) 7 в истинное высказывание, а при подстановке цифры 2 - в ложное высказывание. Что касается т. н. связанных (или фиктивных) П., то они сами по себе вообще ничего не означают, несут чисто синтаксич. функции и могут (при соблюдении нек-рых элементарных предосторожностей) "переименовываться", т. е. заменяться др. П. Такова, напр., П. у в записях
[1927-18.jpg]

у или
[1927-19.jpg]
в интерпретации (прочтения) к-рых она вообще не входит и может быть заменена любой др. П.; так, первая из них (читаемая как "сумма целых чисел от 5 до 25") может быть заменена на
[1927-20.jpg]

х или
[1927-21.jpg]

z, а вторая ("все числа обладают свойством Р") - на
[1927-22.jpg]

Различают индивидные, пропозициональные, предикатные, функциональные, числовые и др. виды П., вместо к-рых можно (согласно спец. правилам подстановки) подставлять соответственно обозначения предметов из рассматриваемой области ("термы"), обозначения для конкретных высказываний, предикатов, функций, чисел и др. Т. о., П. можно содержательно понимать как "пустое место" в формуле, снабжённое указанием, чем это "место" может быть "заполнено" (своего рода "тара под строго определённый товар").

Свободные вхождения П. в выражения содержательных науч. теорий и формулы логико-матем. исчислений (соответствующие употреблению неопределённых местоимений в обычной речи) допускают различные интерпретации. Первая (соответствующая применению всякого рода процедур подстановок) - т. н. предикатная интерпретация: формула A (x1, . . ., Хп) к.-л. исчисления понимается как нек-рый n-местный предикат. Та же формула может интерпретироваться и как предложение (высказывание), а именно как предложение Vх1 . . . VxnA(x1, · · ·, Хп), являющееся её "замыканием",-это т. н. интерпретация всеобщности (употребительная, напр., при формулировке аксиом различных науч. теорий). Свободным П. могут, наконец, приписываться значения, постоянные в пределах нек-рого контекста (напр., вывода из данной совокупности формул); их тогда наз. параметрами этого контекста и говорят об их условной интерпретации. Напр., П. х в выражении cos x, взятом изолированно, имеет предикатную интерпретацию, в тождестве sin2 х + cos2x =1 - интерпретацию всеобщности, в уравнении cos x = 1 (в процессе его решения, когда эта П. именуется "неизвестным") - условную интерпретацию.

Т. о., на различных уровнях формализации понятие П. выступает как уточнение средств, общеупотребительных в обычных разговорных языках (неопределённые местоимения, неопределённые артикли), и различных способов использования этих средств.

См. также Квантор, Логика предикатов, Математика.

Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, §§ 31, 32, 45; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, §§ 02, 04, 06.

ПЕРЕМЕННОГО ТОКА ГЕНЕРАТОР, машина, преобразующая механич. энергию вращения в электрич. энергию переменного тока. Различают синхронные и асинхронные П. т. г. Асинхронные генераторы, имевшие ограниченное применение, гл. обр. в автономных системах электропитания, к 70-м гг. 20 в. практически полностью заменены синхронными генераторами. Наибольшее применение имеют трёхфазные Пи т. г.; однофазные П. т. г. не получили распространения, т. к. их характеристики и эксплуатац. качества значительно хуже, чем у трёхфазных. Мощные П. т. г. устанавливают на электростанциях (см. Турбогенератор, Гидрогенератор); П. т. г. относительно небольшой мощности работают в системах автономного энергоснабжения (см. Дизельная электростанция, Газотурбинная электростанция) и в преобразователях частоты (см. Двигатель-генераторный агрегат ).

ПЕРЕМЕННОГО ТОКА МАШИНА, электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрич. энергии в механическую (двигатель) либо в электрич. энергию другого напряжения или частоты (преобразователь). П. т. м. разделяют на синхронные и асинхронные.

Синхронными называют П. т. м., в к-рых осн. магнитное поле создаётся постоянным током (или постоянным магнитом), а частота вращения ротора и частота переменного тока находятся в строго определённой зависимости:
[1927-23.jpg]

где n - частота вращения ротора в об/мин, f - частота переменного тока в гц, p - число пар полюсов магнитной системы. Синхронные машины используют гл. обр. в качестве переменного тока генераторов и двигателей в электроприводах, реже для преобразователей постоянного тока в переменный, а также для компенсации сдвига фаз между током и напряжением в электрических сетях (см. Компенсатор синхронный) и в устройствах автоматики и измерительной техники, где необходима синхронная частота вращения командных и исполнит. устройств.

Асинхронными называют такие П. т. м., в к-рых осн. магнитное поле создаётся переменным током и частота вращения ротора, не связанная жёстко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины (см. Асинхронная электрическая машина), используемые гл. обр. в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели (см. Коллекторная машина. Репульсионный электродвигатель) - более дорогие и менее надёжные в эксплуатации, чем бесколлекторные.

П. т. м. являются также составной частью каскадов электромашинных и используются в качестве электрич. микроэлектромашин.

Синхронные и асинхронные П. т. м. обладают свойством обратимости - они могут работать как в режиме генератора, так и в режиме двигателя.

ПЕРЕМЕННОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЬ, машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах (в тех случаях, когда требуется постоянство частоты вращения при отсутствии значительных перегрузок на валу двигателя), а также для компенсации реактивной мощности в сети. Из асинхронных электродвигателей наиболее распространены трёхфазные асинхронные П. т. э. с короткозамкнутым ротором; асинхронные электродвигатели с фазным ротором применяются значительно реже; применяют также однофазные П. т. э.- конденсаторные асинхронные двигатели. Разновидность П. т. э.- линейный двигатель, к-рый, в отличие от обычных (вращающих) двигателей, преобразует электрич. энергию переменного тока в механич. энергию движения по незамкнутой линии. Н. А. Ротанов.

ПЕРЕМЕННОЕ СКРЕЩИВАНИЕ, ротационное скрещивание, метод разведения с.-х. животных, применяемый как особая форма промышленного скрещивания для получения животных повышенной продуктивности. П. с. известно с кон. 19 в. В России теоретич. основы этого метода разрабатывали Е. А. Богданов, Д. А. Кисловский и др. Сущность П. с. состоит в получении помесей от скрещивания двух и более пород и в последовательном спаривании помесных маток в ряде поколений с производителями исходных пород. П. с. позволяет использовать явление гетерозиса у помесных животных не только первого поколения, но и в ряде последующих. Важнейшее условие успеха П. с.-обоснованный подбор хорошо сочетающихся между собой пород. П. с., в к-ром используются 2 породы, наз. простым, 3 и более - сложным. Многопородное П. с. наиболее эффективно в свиноводстве. См. Скрещивание.

ПЕРЕМЕННЫЕ ЗВЁЗДЫ. П. з.-звёзды, видимый блеск к-рых подвержен колебаниям. Многие П. з. являются нестационарными звёздами; переменность блеска таких звёзд связана с изменением их темп-ры и радиуса, истечением вещества, конвективными движениями и др. Эти изменения у звёзд нек-рых типов являются регулярными и повторяются со строгой периодичностью. Однако нестационарность звёзд не всегда вызывает их переменность; известны звёзды, у к-рых истечение вещества, обнаруживаемое по эмиссионным линиям в спектре, не сопровождается сколько-нибудь заметными изменениями блеска. С другой стороны, переменными бывают и стационарные звёзды: так, у двойных звёзд периодич. ослабления блеска обусловлены затмениями одного компонента другим. Правда, у тесных двойных звёзд возникает также и физ. нестационарность, появляются газовые потоки и т. п., что усложняет видимую картину изменения их блеска. Вращение звёзд с неоднородной поверхностной яркостью также приводит к переменности их блеска.

I. Общие сведения

П. з. являются наиболее ценными источниками сведений о физ. характеристиках звёзд. Кроме того, свойства П. з. позволяют использовать их для оценки расстояния до звёздных систем, в состав к-рых они входят; они могут служить индикатором типа звёздного населения таких систем. Будучи при этом легко обнаруживаемыми - и часто на очень больших расстояниях,- П. з. заслуженно пользуются особым вниманием астрономов. Количество переменных и "заподозренных" в переменности звёзд нашей Галактики, включённых в каталоги, составляет ок. 40000 (на 1975); ежегодно число известных П. з. увеличивается в среднем на 500-1000. Ок. 5000 П. з. известно в других галактиках и более 2000 - в шаровых звёздных скоплениях нашей Галактики. П. з., в пределах каждого созвездия, обозначают лат. буквами (одиночными от R до Z или комбинациями двух букв) или номерами с буквой V перед ними.

Из звёзд, изменяющих свой блеск, легче всего обнаруживаются новые звёзды. Появление на небе и исчезновение новых звёзд отмечалось уже в глубокой древности. Наблюдения ярких новых звёзд (точнее - сверхновых звёзд) провели в 1572 Тихо Браге, а в 1604 И. Кеплер. Но первой П. з., меняющей свой блеск более или менее регулярно (а не "временно", подобно новым звёздам), стала открытая нем. астрономом Д. Фабрициусом в 1596 звезда о Кита (Мира); франц. астроном И. Бульо в 1667 определил её период изменения блеска, оказавшийся равным 11 месяцам. В 1669 итал. учёный Дж. Монтанари открыл переменность блеска бета Персея (Алголя). Англ. астроном Дж. Гудрайк (1764-86) обнаружил строгую периодичность ослаблений блеска Алголя, открыл и исследовал переменность блеска бета Цефея, а англ. астроном Э. Пиготт - n Орла. Но систематич. изучение П. з. начал Ф. Аргеландер, к-рый в 40-х гг. 19 в. создал методику глазомерных оценок блеска П. з. В 1866 было известно уже 119 П. з. К кон. 19 в. было доказано, что переменность Алголя вызывается затмениями яркого компонента более тёмным, и, т. о., было обнаружено существование т. н. затменных П. з. Тогда же была выдвинута гипотеза (нем. астроном А. Риттер), согласно к-рой наблюдаемую переменность звёзд можно объяснить их пульсацией. Внедрение в исследования П. з. астрофотографии привело к открытию большого числа новых П. з. К 1915 было известно уже 1687 П. з., к 1940 - 8254. Открытая в 1912 амер. астрономом Г. Ливитт зависимость период - светимость позволила X. Шепли определить расстояние до центра Галактики, а Э. Хабблу доказать в 1924, что туманности, подобные туманности Андромеды, являются независимыми звёздными системами, др. галактиками.

В России систематич. фотографирование и исследование П. з. начали В. К. Цераский и С. Н. Блажко в Москве (1895). Новую эпоху в исследовании П. з. открыло массовое внедрение многоцветной фотоэлектрич. фотометрии с нач. 50-х гг. Совр. светоприёмники позволяют исследовать (при условии хорошего астроклимата) переменность блеска с амплитудой в тысячные доли звёздной величины и временным разрешением в тысячные доли секунды; при тщательных исследованиях обнаруживается, что всё возрастающее количество звёзд, считающихся обычно постоянными, оказывается микропеременным.

В 1946 Международный астрономический союз поручил обозначение новых П. з. и издание каталогов, а также разработку системы классификации Астрономическому совету АН СССР и Гос. астрономическому институту им. П. К. Штернберга (Б. В. Кукаркин, П. П. Паренаго, П. Н. Холопов и др.). С 1928 издаются сборники "Переменные звёзды". В СССР исследования П. з. активно ведутся в астрономич. учреждениях Москвы, Одессы, Крыма, Бюракана, Ленинграда, Абастумани, Душанбе, Ташкента, Казани, Шемахи. За рубежом наиболее интенсивные исследования П. з. ведут Маунт-Вилсоновская, Маунт-Паломарская, Китт-Пикская, Ликская и Гарвардская астрономические обсерватории в США.

II. Классификация переменных звёзд

П. з. делятся на два больших класса: затменные П. з. и физические П. з.

1. ЗАТМЕННЫЕ ПЕРЕМЕННЫЕ ЗВЁЗДЫ

Затменные П. з. представляют собой систему из двух звёзд, вращающихся вокруг общего центра масс, причём плоскость их орбит столь близка к лучу зрения земного наблюдателя, что при каждом обороте наблюдается затмение одной звезды другой, сопровождаемое ослаблением суммарного блеска системы. Расстояние между компонентами обычно

сравнимо с их размерами. В нашей Галактике обнаружено св. 4000 звёзд этого класса. У одних из них (звезды типа B Персея) блеск вне затмения практически постоянен, у других же (типа бета Лиры и W Большой Медведицы) блеск изменяется непрерывно; это объясняется тем, что из-за относительно малого расстояния между компонентами форма их отлична от шаровой, они вытянуты вследствие действия приливных сил. Изменение блеска у таких систем обусловлено не только затмением, но и непрерывным изменением обращённой к наблюдателю площади светящейся поверхности звёзд; в нек-рых случаях затмение вообще отсутствует. Периоды изменения блеска затменных звёзд (совпадающие с их орбитальными периодами) очень разнообразны; у звёзд типа W Большой Медведицы с почти соприкасающимися компонентами (звёздами-карликами) они меньше суток; у звёзд типа бета Персея периоды достигают сотен дней, а у нек-рых систем, в состав к-рых входят сверхгиганты (VV Цефея, e Возничего и др.),- десятков лет.

Затменные П. з. представляют уникальную возможность определения ряда важнейших характеристик звёзд, особенно в том случае, если известны расстояние до системы и кривая изменения лучевых скоростей входящих в систему звёзд (см. Двойные звёзды). Интерес к затменным двойным звёздам резко возрос, когда нек-рые из них были отождествлены с космич. источниками рентгеновского излучения. В нек-рых случаях (HZ Геркулеса, или Геркулес Х-1; Центавр Х-3) затмения наблюдаются также и в рентгеновском диапазоне, причём по доплеровскому изменению периода импульсов рентгеновского излучения оказывается возможным определить элементы орбиты компонентов. Как и в случае импульсов радиоизлучения у пульсаров, эти периоды составляют немногие секунды и свидетельствуют о быстром вращении излучающего в рентгеновском диапазоне белого карлика (или нейтронной звезды}, входящего в двойную систему. У ряда тесных двойных систем компонентом с излучением в оптич. диапазоне является сверхгигант спектрального класса В; в этих случаях не наблюдаются затмения в рентгеновском диапазоне, а иногда и в оптическом. Масса невидимого компонента в таких системах, по-видимому, превышает 3 массы Солнца и такие звёзды (особенно Лебедь Х-1 или V 1357 Лебедя), по-видимому, следует рассматривать как "чёрные дыры". Причиной рентгеновского излучения тесных двойных систем является, по всей видимости, аккреция компактным компонентом звёздного ветра или газовых струй, идущих от видимого компонента.

2. ФИЗИЧЕСКИЕ ПЕРЕМЕННЫЕ ЗВЁЗДЫ

Физические П. з. изменяют свой блеск в результате происходящих в них физ. процессов. Физ. П. з. делятся на пульсирующие и эруптивные.

Пульсирующие переменные звёзды характеризуются плавными и непрерывными изменениями блеска; в большинстве случаев они объясняются пульсацией внеш. слоев звёзд. При сжатии звезды радиус её уменьшается, она нагревается и светимость её увеличивается; при расширении звезды светимость её падает. Периоды изменения блеска пульсирующих П. з. колеблются от долей дня (звёзды типа RR Лиры, б Щита и бета Большого Пса) до десятков (цефеиды, звезда типа RV Тельца) и сотен дней (звёзды типа Миры Кита, полуправильные звёзды). Периодичность изменения блеска некоторых звёзд выдерживается с точностью хорошего часового механизма (напр., некоторые цефеиды и звёзды типа RR Лиры), у других же она практически отсутствует (у красных неправильных переменных). Всего пульсирующих звёзд известно ок. 14 000.

Долгопериодические цефеиды - переменные звёзды-сверхгиганты с периодами от 1 до 50-200 сут, с амплитудами изменения блеска от 0,1 до 2 звёздных величин в фотографич. лучах. Период и форма кривой блеска, как правило, постоянны. Кривая изменения лучевых скоростей является почти зеркальным отражением кривой блеска, максимум этой кривой практически совпадает с минимумом блеска, её минимум - с максимумом блеска. Спектральные классы в максимуме блеска F5 - F8, в минимуме F7 - К0, причём тем более поздние, чем больше период изменения блеска. С ростом периода растёт и светимость цефеид.

Звёзды типа Миры Кита - долгопериодич. переменные звёзды-гиганты с амплитудами более 2,5 звёздной величины (до 5-7 звёздных величин и больше), с хорошо выраженной периодичностью, с периодами, заключёнными в пределах приблизительно от 80 до 1000 сут, имеющие характерные эмиссионные спектры поздних спектральных классов (Me, Се, Se).

Полуправильные П. з.- звёзды поздних классов (F, G, К, М, С, S),субгиганты, гиганты или сверхгиганты, обладающие заметной периодичностью, сопровождаемой различными неправильностями в изменении блеска. Периоды полуправильных П. з. заключены в очень широких пределах - приблизительно от 20 до 1000 сут и больше. Формы кривых изменения блеска весьма разнообразны, амплитуда обычно не превышает 1-2 звёздных величин.

П. з. типa RR Лиры (коротко-периодич. цефеиды, или звёзды типа П. з. в шаровых скоплениях)-пульсирующие гиганты, обладающие особенностями цефеид, с периодами изменения блеска, заключёнными в пределах от 0,05 до 1,2 сут, спектральными классами А и F и амплитудами до 1-2 звёздных величин. Известны случаи переменности как формы кривой блеска, так и периода. В ряде случаев эти изменения периодичны (эффект Блажко).

П. з. типа б Щита - субгиганты спектральных классов А и F, пульсирующие с периодом в немногие часы и амплитудой в несколько сотых или десятых долей звёздной величины.

П. з. типа RV Тельца - звёзды-сверхгиганты со сравнительно стойкой периодичностью изменений блеска, с общей амплитудой до 3 звёздных величин; кривая блеска состоит из двойных волн с чередующимися главными и вторичными минимумами, периоды заключены в пределах от 30 до 150 сут; спектральные классы от G до поздних К (изредка появляются полосы окиси титана, характерные для спектров класса М).

П. з. типа бета Цефея, или, как их часто называют, звёзды типа B Большого Пса,- однородная группа пульсирующих звёзд-гигантов, блеск к-рых меняется в пределах ок. 0,1 звёздной величины,

периоды заключены в пределах от 0,1 до 0,6 сут, спектральные классы В0-В3. В отличие от цефеид, максимум блеска у них соответствует фазе минимального радиуса звезды.

Эруптивные переменные звёзды характеризуются неправильными, часто быстрыми и большими изменениями блеска, вызванными процессами, носящими взрывообразный (эруптивный) характер. Эти звёзды делят на две группы: а) молодые, недавно сформировавшиеся звёзды, к к-рым относят быстрые неправильные (т. н. орионовы) П. з., неправильные П. з. типа Т Тельца, вспыхивающие звёзды типа UV Кита и родственные им объекты, многочисленные в очень молодых звёздных скоплениях и часто связанные с диффузным веществом; б) звёзды, обычно почти постоянные, но время от времени показывающие быстрые и большие увеличения яркости; это - новые и сверхновые звёзды, повторные новые, звёзды типа U Близнецов, новоподобные и симбиотические переменные (для последних характерно присутствие в спектре линий, типичных как для горячих, так и для холодных звёзд). Во многих случаях (если не всегда) звёзды этой группы оказываются двойными системами. Эруптивных звёзд известно более 1600.

Орионовы П. з.- неправильные П. з., связанные с диффузными туманностями или наблюдаемые в районах таких туманностей. К этой же группе П. з. относятся и быстрые неправильные П. з., видимым образом не связанные с диффузными туманностями и обнаруживающие изменения блеска на 0,5-1,0 звёздной величины в течение нескольких часов или суток. Эти звёзды иногда относят к особому классу П. з. типа RW Возничего; однако резкой границы между ними и орионовыми П. з. не существует.

П. з. типа Т Тельца - неправильные П. з., в спектре к-рых имеются следующие спектральные признаки: спектральные классы заключены в пределах F - М; спектр наиболее типичных звёзд напоминает спектр солнечной хромосферы; наблюдаются аномально интенсивные флюоресцентные эмиссионные линии FI с длинами волн 4046А, 4132А. Эти П. з. наблюдаются обычно только в диффузных туманностях.

П. з. типa UV Кита-звёзды, иногда испытывающие вспышки с амплитудой от 1 до 6 звёздных величин. Максимум блеска достигается через секунды или десятки секунд после начала вспышки, к нормальному блеску звезда возвращается через неск. минут или десятков минут. Встречаются как в звёздных скоплениях, так и в окрестностях Солнца.

Новые звёзды - это горячие карлики, за неск. дней увеличивающие блеск на 7-15 звёздных величин, а затем в течение неск. месяцев или лет возвращающиеся к блеску, к-рый они имели до начала вспышки. Спектральные данные показывают, что у звезды возникает расширяющаяся оболочка, постепенно рассеивающаяся в пространстве. У повторных новых звёзд вспышки повторяются через неск. десятков лет; возможно, что через сотни или тысячи лет повторяются и вспышки типичных новых звёзд, амплитуды изменения блеска к-рых обычно гораздо больше.

П. з. типа U Близнецов - звёзды, у к-рых обычно наблюдаются небольшие быстрые флуктуации блеска. При среднем цикле в неск. десятков или сотен дней у звёзд этого типа наблюдаются увеличения блеска на 2-6 звёздных величин, причём тем большие, чем реже вспышки происходят. Подобно новым звёздам, звёзды этого типа, являются тесными двойными системами, их вспышки так или иначе связаны с обменом вещества между компонентами, находящимися на разных стадиях эволюции.

В отдельную группу могут быть выделены звёзды, переменность блеска которых обусловлена неоднородной поверхностной яркостью, вследствие чего при вращении блеск их изменяется. К этой группе относятся прежде всего звёзды типа BV Дракона, к-рые, подобно П. з. типа UV Кита, обнаруживают молниеносные вспышки, но обладают также и небольшими периодич. изменениями блеска. По-видимому, к этой же группе П. з. относятся и магнитные звёзды или П. з. типа а2 Гончих Псов. Это звёзды спектрального класса А, в спектре к-рых наблюдаются аномально усиленные линии кремния, стронция, хрома и редкоземельных элементов, изменяющие интенсивность стем жепериодом, чтои блеск и магнитное поле, всегда наблюдающееся у звёзд этого типа. Амплитуда обычно не превышает 0,1 звёздной величины, а периоды заключены в интервале 1-25 сут. Переменность объясняется, по-видимому, тем, что области, отличающиеся по темп-ре и хим. составу, располагаются на поверхности звезды симметрично относительно магнитной оси, наклонной к оси вращения (гипотеза "наклонного ротатора").

Сверхновые звёзды не наблюдались в нашей Галактике со времён Тихо Браге и Кеплера, но в других галактиках их открывают ежегодно до 20; всего же их известно к 1975 св. 400. Вспышка сверхновой - наиболее грандиозное явление в мире звёзд; в максимуме блеска сверхновая звезда, вспыхнувшая в той или иной галактике, иногда достигает совокупной яркости всех остальных звёзд этой галактики. Вспышки сверхновых звёзд связывают с началом коллапса звезды после истощения источников ядерной энергии (см. Коллапс гравитационный). После вспышки сверхновая звезда превращается в пульсар - нейтронную звезду, вращающуюся с периодом в немногие секунды и доли секунды; узконаправленное электромагнитное излучение, выходящее из магнитных полюсов пульсара, не совпадающих с полюсами оси вращения, обусловливает наблюдаемое импульсное излучение пульсара. Пока известен лишь один пульсар, отождествлённый с наблюдаемым в видимых лучах небесным объектом,- СМ Тельца. Это - результат вспышки сверхновой звезды 1054 г., приведший также к образованию Крабовидной туманности.

III. Теоретические исследования переменных звёзд

Причины изменений блеска физических П. з. и место, занимаемое этими звёздами в звёздной эволюции, составляют тесно связанный круг проблем. По-видимому, переменность характерна для звёзд на определённых этапах их эволюции. Особое значение для понимания природы переменности имеет изучение П.з. в звёздных скоплениях (для звёзд, входящих в скопления, можно определить и возраст, и эволюционную стадию), а также анализ положения П. з. разных типов на диаграмме "спектр - светимость" (см. Герцшпрунга- Ресселла диаграмма).

Скопления, содержащие быстрые неправильные П. з., очень молоды (их возраст 106-107 лет). В этих скоплениях лишь наиболее массивные звёзды, обладающие значит. светимостью, достигли главной последовательности на диаграмме Герцшпрунга-Ресселла, занимают её верхнюю часть и являются обычными стационарными звёздами. У звёзд меньшей светимости и массы ещё не закончилось гравитационное сжатие, сохранилась обширная конвективная зона, в к-рой происходят неправильные бурные движения газа, с этим, по-видимому, и связана переменность блеска и спектра молодых звёзд.

Ряд типов пульсирующих П. з. расположен на диаграмме Герцшпрунга - Ресселла в пределах полосы нестабильности, пересекающей диаграмму от красных сверхгигантов спектрального класса К до белых звёзд-карликов класса А. К их числу принадлежат цефеиды, звёзды типа RV Тельца, RR Лиры и б Щита. Во всех этих звёздах действует, по-видимому, единый механизм переменности, вызывающий пульсацию их верхних слоев. Звёзды, соседствующие на диаграмме Герцшпрунга - Ресселла, обладают схожими характеристиками переменности (напр., цефеиды плоской и сферич. составляющей), но их эволюц. история, массы, внутр. строение резко отличаются.

Изучение пространственно-кинематич. характеристик П. з. было одним из гл. факторов, приведших в 40-х гг. 20 в. к разработке концепции составляющих Галактики и звёздных населений (см. Галактика).

Лит.: Общий каталог переменных звезд, 3 изд., т. 1 - 3, М., 1969 - 71; Пульсирующие звезды, М., 1970; Эруптивные звезды, М., 1970; Затменные переменные звезды, М., 1971; Методы исследования переменных звезд, М., 1971. Ю.Н. Ефремов.

"ПЕРЕМЕННЫЕ ЗВЁЗДЫ", сборники статей, издаваемые Астрономическим советом АН СССР. Осн. в 1928 Нижегородским кружком любителей физики и астрономии. С 1946 издаются в Москве (до 1971 как Бюллетень). В сб-ках публикуются результаты исследований переменных звёзд, квазаров, рентгеновских источников и др. космич. объектов, показывающих явления нестационарности, а также связанные с этими объектами методич. и теоретич. работы. К нач. 1975 вышли 141 номер и 6 приложений к ним.

ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ, величины, к-рые в изучаемом вопросе принимают различные значения либо, соответственно, сохраняют одно и то же значение. Напр., при изучении падения тела расстояние последнего от земли и скорость падения - переменные величины, ускорение же (если пренебречь сопротивлением воздуха)- величина постоянная. Элементарная математика рассматривала все изучаемые ею величины как постоянные. Понятие переменной величины возникло в математике в 17 в. под влиянием запросов естествознания, выдвинувшего на первый план изучение движения - процессов, а не только состояний. Это понятие не укладывалось в формы, выработанные математикой древности и средних веков, и требовало для своего выражения новых форм. Такими новыми формами явились буквенная алгебра и аналитич. геометрия Р. Декарта. В буквах декартовой алгебры, могущих принимать произвольные числовые значения, и нашли своё символическое выражение переменные величины. "Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление..." (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 573). В этот период и вплоть до сер. 19 в. преобладают механич. воззрения на переменные величины. Наиболее ярко они были выражены И. Ньютоном, называвшим переменные величины "флюэнтами", т.е. текущими, и рассматривавшим их "...не как состоящие из крайне малых частей, но как описываемые непрерывным движением" ("Математические работы", М., 1937, с. 167). Эти воззрения оказались весьма плодотворными и, в частности, позволили Ньютону совершенно по-новому подойти к нахождению площадей криволинейных фигур. Ньютон впервые стал рассматривать площадь криволинейной трапеции (ABNM на рис.)не как постоянную величину (вычисляемую суммированием составляющих её бесконечно малых частей), а как переменную величину, производимую движением ординаты кривой (NM); установив, что скорость изменения рассматриваемой площади пропорциональна ординате NM, он тем самым свёл задачу вычисления площадей к задаче определения переменной величины по известной скорости её изменения. Законность внесения в математику понятия скорости была обоснована в нач. 19 в. теорией пределов, давшей точное определение скорости как производной. Однако в течение 19 в. постепенно выясняется ограниченность описанного выше воззрения на переменные величины. Матем. анализ всё больше становится общей теорией функций, развитие к-рой невозможно без точного анализа сущности и объёма её основных понятий. При этом оказывается, что уже понятие непрерывной функции в действительности значительно сложнее, чем приведшие к нему наглядные представления. Открываются непрерывные функции, не имеющие производной ни в одной точке; понимать такую функцию как результат движения означало бы допускать движение, не имеющее скорости ни в какой момент. Всё большее значение приобретает изучение разрывных функций, а также функций, заданных на множествах значительно более сложной структуры, чем интервал или объединение нескольких интервалов. Ньютоновское толкование переменной величины становится недостаточным, а во многих случаях и бесполезным.

С другой стороны, математика начинает рассматривать как переменные не только величины, но и всё более разнообразные и широкие классы других своих объектов. На этой почве во 2-й пол. 19 в. и в 20 в. развиваются теория множеств, топология и матем. логика. О том, насколько расширилось в 20 в. понятие переменной величины, свидетельствует тот факт, что в матем. логике рассматриваются не только переменные, пробегающие произвольные множества предметов, но и переменные, значениями к-рых служат высказывания, предикаты (отношения между предметами) и т. д. (см. Переменная).
[1927-24.jpg]

ПЕРЕМЕННЫЙ ЛАД, лад, в котором функция устоя (тоники) переходит от одного тона к другому (того же звукоряда), а также лад, звукоряд к-рого изменяется при одной и той же тонике (устое) (по И. В. Способину).

Понятие П. л. применяется обычно к первому типу (хотя его скорее следовало бы называть переменно-тональным, а второй - собственно переменно-ладовым). Понятие и термин "П. л." были впервые предложены рус. муз. теоретиком Б. Л. Яворским. П. л. распространены в нар. музыке, в частности в русской. Относительная непрочность тонального центра позволяет ему сравнительно легко смещаться практически на любую ступень, причём ощущения модуляции не возникает. Отличие переменно-ладового смещения опоры от модуляции - в отсутствии ухода из одной тональности и установления другой, либо в слиянии двух или нескольких тональностей (с единым звукорядом) в одно ладовое целое. Преобладает ощущение двух или нескольких красок, принадлежащих той же ладовой системе (М. И. Глинка, "Иван Сусанин ", 1-е действие, хор "Лёд реку в полон забрал"). Особенно заметно это в наиболее распространённом виде П. л.- параллельно-переменном ладе, часто встречающемся в рус. нар. песнях:
[1927-25.jpg]

Мягкость переходов от одной опоры к другой, обычная для П. л., придаёт ему спокойно-переливчатый характер. Возможна, однако, и иная его трактовка - см., напр., отрывок из 2-го действия оперы "Князь Игорь" Бородина: ПЛЯСКА МУЖЧИН, ДИКАЯ


[1927-26.jpg]

Лит.: Протопопов С. В., Элементы строения музыкальной речи, ч. 1 - 2, М., 1930; Вахромеев В. А., Ладовая структура русских народных песен, М., 1968; Способин И. В. Лекции по курсу гармонии, М., 1969. Ю. Н. Холопов.

ПЕРЕМЕННЫЙ ПРОФИЛЬ, длинномерное металлич. изделие с сечением, изменяющимся по длине (плавно или ступенчато). Профили плавного переменного сечения изготовляют в основном прокаткой, непрерывно меняя расстояние между валками (см. Прокатный профиль), а профили ступенчатого переменного сечения - гл. обр. прессованием (выдавливанием) через матрицу (см. Прессованный профиль). Для получения профилей с переменными наружными размерами производят смену матриц в процессе прессования. Для получения полых профилей с переменными размерами внутр. контура изменяют положение ступенчатой иглы (оправки) в матрице. Возможно также изготовление П. п. штамповкой отдельных участков по длине профиля постоянного сечения. П. п. используют для изготовления консольно нагруженных конструкций, а также сварных или клёпаных конструкций, когда утолщение необходимо для создания равнопрочного соединения.

Лит.: Шор Э. Р., Новые процессы прокатки, М., 1960; Ерманок М. 3., Синяков В. В., Прессование профилей и труб периодически изменяющегося сечения, М., 1968.

ПЕРЕМЕННЫЙ ТОК, в широком смысле электрический ток, изменяющийся во времени. Обычно в технике под П. т. понимают периодич. ток, в к-ром среднее значение за период силы тока и напряжения равно нулю. Периодом Т П. т. наз. наименьший промежуток времени (выраженный в сек), через к-рый изменения силы тока (и напряжения) повторяются (рис. 1). Важной характеристикой П. т. является его частота f - число периодов в 1 сек: f = 1/Т. В электроэнергетич. системах СССР и большинства стран мира принята стандартная частота f = 50 гц, в США - 60 гц. В технике связи применяются П. т. высокой частоты (от 100 кгц до 30 Ггц). Для спец. целей в пром-сти, медицине и др. отраслях науки и техники используют П. т. самых различных частот, а также импульсные токи (см. Импульсная техника).


i(t).
[1927-27.jpg]

Рис. 1. График периодического переменного тока

Для передачи и распределения электрич. энергии преимущественно используется П. т. благодаря простоте трансформации его напряжения почти без потерь мощности (см. Передача электроэнергии, Электрическая цепь). Широко применяются трёхфазные системы П. т. (см. Трёхфазная цепь). Генераторы и двигатели П. т. по сравнению с машинами постоянного тока при равной мощности меньше по габаритам, проще по устройству, надёжнее и дешевле. П. т. может быть выпрямлен, напр. полупроводниковыми выпрямителями, а затем с помощью полупроводниковых инверторов преобразован вновь в П. т. другой, регулируемой частоты; это создаёт возможность использовать простые и дешёвые безколлекторные двигатели П. т. (асинхронные и синхронные) для всех видов электроприводов, требующих плавного регулирования скорости.

Пи . т. широко применяется в устройствах связи (радио, телевидение, проволочная телефония на дальние расстояния и т. п.). П. т. создаётся переменным напряжением. Переменное электромагнитное поле, возникающее в пространстве, окружающем проводники с током, вызывает колебания энергии в цепи П. т.: энергия периодически то накапливается в магнитном или электрич. поле, то возвращается источнику электроэнергии. Колебания энергии создают в цепи П. т. реактивные токи, бесполезно загружающие провода и источник тока и вызывающие дополнит. потери энергии, что является недостатком передачи энергии П. т.

За основу для характеристики силы П. т. принято сопоставление среднего теплового действия П. т. с тепловым действием постоянного тока соответствующей силы. Полученное таким путём значение силы П. т. I наз. действующим (или эффективным) значением, математически представляющим среднеквадратичное за период значение силы тока. Аналогично определяется и действующее значение напряжения П. т. U. Амперметры и вольтметры П. т. измеряют именно действующие значения тока и напряжения.

В простейшем и наиболее важном на практике случае мгновенное значение силы i П. т. меняется во времени t по синусоидальному закону: i = Im sin (wt + a), где Im - амплитуда тока, w = 2Пи f - его угловая частота, a - нач. фаза. Синусоидальный (гармонический) ток создаётся синусоидальным напряжением той же частоты: и = Umsin (wt + B), где Um - амплитуда напряжения, бета - нач. фаза (рис. 2). Действующие значения такого П. т. равны:

[1927-28.jpg]
[1927-29.jpg]

Для синусоидальных токов, удовлетворяющих условию квазистационарности (см. Квазистационарный ток; в дальнейшем будут рассматриваться только такие токи), справедлив Ома закон (закон Ома в дифференциальной форме справедлив и для неквазистационарных токов в линейных цепях). Из-за наличия в цепи П. т. индуктивности или (и) ёмкости между током г и напряжением и в общем случае возникает сдвиг фаз ф = бета - a, зависящий от параметров цепи (активного сопротивления r, индуктивности L, ёмкости С) и угловой частоты w. Вследствие сдвига фаз ср. мощность p П. т., измеряемая ваттметром, меньше произведений действующих значений тока и напряжения: p = IU cos ф.

[1927-30.jpg]

Рис. 2. Графики напряжения u и тока i в цепи переменного тока при сдвиге фазы ф.

[1927-31.jpg]

Рис. 3. Схема и графики напряжения и и тока i в цепи, содержащей только активное сопротивление r.

В цепи, не содержащей ни индуктивности, ни ёмкости, ток совпадает по фазе с напряжением (рис. 3). Закон Ома для действующих значений в этой цепи будет иметь такую же форму, как для цепи постоянного тока: I = U/r. Здесь r - активное сопротивление цепи, определяемое по активной мощности Р, затрачиваемой в цепи: r = Р/I2.

При наличии в цепи индуктивности L П. т. индуцирует в ней эдс самоиндукции eL = - L . di/dt = -wLIm cos (wt + + a)= wLImsin (wt + a - л/2). Эдс самоиндукции противодействует изменениям тока, и в цепи, содержащей только индуктивность, ток отстаёт по фазе от напряжения на четверть периода, т. е. ф = Пи /2 (рис. 4). Действующее значение eLравно EL= IwL = IxL , где xL= wL - индуктивное сопротивление цепи. Закон Ома для такой цепи имеет вид: I = U/xL= U/wL.

[1927-32.jpg]

Рис. 4. Схема и графики напряжения и и тока i в цепи, содержащей только индуктивность L.

[1927-33.jpg]

Рис. 5. Схема и графики напряжения и и тока i в цепи, содержащей только ёмкость С.

Когда ёмкость С включена под напряжение и, то её заряд равен q = Си. Периодич. изменения напряжения вызывают периодич. изменения заряда, и возникает ёмкостный ток i = dq/dt = C . du/dt = = wCUm cos(wt + бета) = wCUm sin (wt + бета+ Пи /2). Т. о., синусоидальный П.т., проходящий через ёмкость, опережает по фазе напряжение на её зажимах на четверть периода, т. е. ф = -Пи /2 (рис. 5). Эффективные значения в такой цепи связаны соотношением I = wCU = U/xc, где xс - 1/wC - ёмкостное сопротивление цепи.

Если цепь П. т. состоит из последовательно соединённых r, L и С, то её полное сопротивление равно
[1927-34.jpg]

где x = xL - xс= wL - 1/wC- реактивное сопротивление цепи П. т. Соответственно, закон Ома имеет вид:
[1927-35.jpg]

а сдвиг фаз между током и напряжением определяется отношением реактивного сопротивления цепи к активному: tg ф = = x/r. В такой цепи при совпадении частоты w вынужденных колебаний, создаваемых источником П. т., с резонансной частотой индуктивное и емкостное сопротивления равны (wL = 1/wC) и полностью компенсируют друг друга, сила тока максимальна и наблюдается явление резонанса (см. Колебательный контур). В условиях резонанса напряжения на индуктивности и ёмкости могут значительно (часто во много раз) превышать напряжение на зажимах цепи.

[1927-36.jpg]

Облегчение расчётов цепей синусоидальных П. т. достигается построением т. н. векторных диаграмм. Векторы синусоидальных тока и напряжения принято помечать точкой над буквенным обозначением

[1927-37.jpg]

[1927-38.jpg]

[1927-39.jpg]

Рис. 6. Схема и векторная диаграмма цепи переменного тока с последовательным соединением индуктивности L, активного сопротивления r и ёмкости С.

Длины векторов обычно берутся равными (в масштабе построения диаграммы) действующим значениям I и U, а углы между векторами - равными сдвигам фаз между мгновенными значениями соответствующих величин. Алгебра-ич. сложению мгновенных значений синусоидальных величин одной и той же частоты соответствует геометрич. сложение векторов этих величин. На рис. 6 показана векторная диаграмма для цепи П. т. с последовательно соединёнными r, L, С. Мгновенное значение напряжения на зажимах этой цепи равно алгебраич. сумме напряжений на активном и реактивном сопротивлениях: и = uL + иr + иc, следовательно,
[1927-40.jpg]

При построении диаграммы исходным служит вектор тока, т. к. во всех участках неразветвлённой цепи ток один и тот же. Поскольку индуктивное напряжение опережает по фазе ток на Пи /2, а ёмкостное отстаёт от тока на Пи /2 (т. е. они находятся в противофазе), при последоват. соединении они друг друга частично компенсируют.

Векторные диаграммы наглядно иллюстрируют ход вычислений и служат для контроля над ними; построенные с соблюдением масштаба, они позволяют графически определить эффективное напряжение U в цепи и угол сдвига фаз ф.

Для расчётов разветвлённых цепей квазистационарного П. т. используют Кирхгофа правила. При этом обычно применяют метод комплексных величин (символический метод), к-рый позволяет выразить в алгебр. форме геом. операции с векторами П. т. и применить, т. о., для расчётов цепей П. т. все методы расчётов цепей постоянного тока.

Несинусоидальность П. т. в электроэнергетич. системах обычно нежелательна, и принимаются специальные меры для её подавления. Но в цепях электросвязи, в полупроводниковых и электронных устройствах несинусоидальность создаётся самим рабочим процессом. Если среднее за период значение тока не равно нулю, то он содержит постоянную составляющую. Для анализа процессов в цепях несинусоидального тока его представляют в виде суммы простых гармонических составляющих, частоты которых равны целым кратным числам осн. частоты: i = Io + I1m sin (wt + a1) + I2m sin(2wt + a2) + ... + Ikm sin (kwt + ak). Здесь Io - постоянная составляющая тока, I1m sin (wt + a1)- первая гармонич. составляющая (осн. гармоника), остальные члены - высшие гармоники. Расчёт линейных цепей несинусоидального тока на основании принципа суперпозиции (наложения) ведётся для каждой составляющей (т. к. xLи xс зависят от частоты). Алгебр. сложение результатов таких расчётов даёт мгновенное значение силы (или напряжения) несинусоидального тока.

Лит.: Теоретические основы электротехники, 3 изд., ч. 2, М., 1970; Нейман Л. Р., Демирчан К. С., Теоретические основы электротехники, т. 1 - 2, М.- Л., 1966; Касаткин А. С., Электротехника, 3 изд., М., 1974; Поливанов К. М., Линейные электрические цепи с сосредоточенными постоянными, М., 1972 (Теоретические основы электротехники, т. 1).

Л. С. Касаткин.

ПЕРЕМЕСТИТЕЛЬНЫЙ ЗАКОН, коммутативный закон (в математике), см. Коммутативность.

ПЕРЕМЁТ, орудие лова гл. обр. хищной рыбы, тип крючковой снасти. Состоит из прочной бечевы и прикреплённых к ней коротких поводков с крючками, на к-рые насаживается приманка.

ПЕРЕМЕЩЕНИЕ в механике, вектор, соединяющий положения движущейся точки в начале и в конце нек-рого промежутка времени; направлен вектор П. вдоль хорды траектории точки.

ПЕРЕМЕЩЕНИЯ в строительной механике, линейные отклонения точек конструкции, углы поворота сечений, а также комбинации этих величин (взаимные смещения), характеризующие изменение положения конструкции под влиянием силовых нагрузок, температурных воздействий или осадки опор. П. определяют: при оценке жёсткости и связанных с ней эксплуатац. качеств конструкций; как вспомогат. величины при расчёте статически неопределимых систем; при расчёте устойчивости и колебаний конструкций. В стержневых системах для определения П. обычно пользуются формулой Мора; при этом в общем случае учитывают зависимость П. от изгибающих моментов, продольных и поперечных сил, возникающих в элементах системы под влиянием действующих нагрузок, а в частных случаях учитывают влияние либо только изгибающих моментов (в балках, рамах), либо только продольных сил (в фермах).

ПЕРЕМЕЩЕНИЯ ДАТЧИК, измерительный преобразователь линейных или угловых перемещений в сигнал (электрич., механич., пневматич.), удобный для регистрации, дистанционной передачи и дальнейших преобразований. В качестве П. д. могут быть использованы ёмкостные, индуктивные, трансформаторные, резисторные, струнные, фотоэлектрические, струйные, индукционные, ферродинамич. датчики, кодирующие диски. Различают П. д. малых перемещений - от неск. мкм до неск. см и больших перемещений - от десятков см до неск. л; для измерения больших перемещений применяют датчики пути. Наиболее высокую чувствительность при измерении малых перемещений обеспечивают фотоэлектрические, ёмкостные и нек-рые типы индуктивных датчиков. Для измерения перемещений, связанных с деформацией деталей, используют тензодатчики, обычно с усилителями.

Лит. см. при ст. Измерительный преобразователь.

ПЕРЕМЕЩЁННЫЕ ЛИЦА, см. в ст. Беженцы и перемещенные лица.

ПЕРЕМИРИЕ, временное прекращение воен. действий по взаимному соглашению воюющих сторон. П. может быть общим или местным. В первом случае воен. действия прекращаются на всём театре войны и П. заключается главнокомандующими по уполномочию их правительств.

Общее П., как правило, предшествует заключению мирного договора. Так, во время 2-й мировой войны 1939-45 Объединённые нации заключили в 1943-45 общее П. с Италией, Румынией, Финляндией, Болгарией и Венгрией (впоследствии с этими странами были подписаны мирные договоры).

Местное П. устанавливается на определённом участке фронта между отдельными частями воюющих. Оно заключается на определённый срок и обычно имеет целевое назначение: обмен пленными, захоронение погибших и т. д. В Женевской конвенции 1949 о защите гражд. населения во время войны записано, что воюющие "...постараются заключать местные соглашения об эвакуации из осаждённой или окружённой зоны раненых и больных, инвалидов, престарелых, детей и рожениц, и о пропуске в эту зону... санитарного персонала и санитарного имущества". Если срок П. не был установлен, воюющие могут возобновить воен. действия в любое время.

ПЕРЕМНОЖАЮЩЕЕ УСТРОЙСТВО, множительно-делительное устройство, часть вычислительной машины или отдельное устройство, в к-ром выполняются операции умножения (деления) над величинами, представленными в аналоговой или цифровой форме. Действие П. у. аналоговых вычислительных машин (АВМ) основано на реализации аппаратурными средствами физ. и матем. зависимостей, позволяющих преобразовывать входные сигналы в выходной сигнал, пропорциональный их произведению. При этом в различных вариантах используют: физ. законы и явления (напр., закон Ома, эффект Холла и др.); нелинейность характеристик электронных приборов (напр., нелинейный участок вольтамперной характеристики диода); тождественные матем. преобразования, позволяющие заменить операцию умножения двух величин другими матем. операциями над этими величинами, напр.
[1927-41.jpg]

либо над их функциями, напр.
[1927-42.jpg]

различные радиотехнич. методы преобразования сигналов, к-рые математически описываются как перемножение двух величин, напр. различные виды модуляции.

В цифровых вычислительных машинах (ЦВМ) операция перемножения обычно выполняется в арифметическом устройстве. В специализированных ЦВМ П. у. иногда выделяют в функционально ориентированный блок; в этом случае наиболее часто используют матричный метод умножения, при к-ром с помощью матрицы логических элементов формируют одновременно все поразрядные произведения и затем суммируют их. Применяют также табличные П. у., к-рые включают постоянные запоминающие устройства, хранящие, напр., таблицы логарифмов и антилогарифмов; в этом случае коды сомножителей являются адресами ячеек, в к-рых записаны их логарифмы. После суммирования логарифмов получают адрес ячейки таблицы антилогарифмов, откуда считывают результат.

В гибридных вычислительных системах используют комбинированные П. у., когда, напр., один из сомножителей в виде цифрового кода подают на вход цифро-аналогового преобразователя, а вторым сомножителем в аналоговой форме регулируют опорное напряжение на матрице сопротивлений. Результат перемножения в виде аналоговой величины получают на выходе преобразователя.

Лит.: Казаков В. А., Вычислительные устройства машин непрерывного действия, М., 1965; Карцев М. А., Арифметика цифровых машин, М., 1969; Гаврилов Ю. В., Пучко А. Н., Арифметические устройства быстродействующих ЭЦВМ, М., 1970; Computer structures: reading and examples, N. Y., 1971. Е. А. Соколинский.

ПЕРЕМЫЧКА, 1) водонепроницаемое ограждение, предохраняющее гидротехнич. сооружение или место работ от затопления во время стр-ва или ремонта. П. сооружают из грунта (земляные - насыпные или намывные), камня (набросные), дерева, реже из бетона и металла. 2) Конструктивный элемент, перекрывающий оконные и дверные проёмы в стене и воспринимающий нагрузку от вышерасположенной конструкции; изготовляется из железобетона, металла, дерева, кирпича.

ПЕРЕМЫШЛЬ, русское название города Пшемысль (Польша).

ПЕРЕМЫШЛЯНЫ, город (с 1939), центр Перемышлянского р-на Львовской обл. УССР. Расположен на р. Гнилая Липа (приток Днестра), в 32 км от ж.-д. ст. Бобрка (на линии Львов - Ивано-Франковск). Мебельный, пищевой комбинаты, молокозавод, кирпичный з-д.

ПЕРЕНАПРЯЖЕНИЕ электрохимическое, отклонение электродного потенциала от его равновесного (по отношению к приэлектродному составу раствора) термодинамического значения при поляризации электрода внеш. током. При заметном удалении от равновесия П. (n) и плотность поляризующего тока (г) обычно связаны соотношением n = а + b lg i (ур-ние Тафеля), где а и b -эмпирич. постоянные. П. зависит от темп-ры, природы электродного материала и состава раствора. П. необходимо для ускорения нужной электродной реакции. Если скорость электродной реакции в целом определяется скоростью собственно электрохим. стадии, связанной с переносом заряда, то П. усиливает электрич. поле, действующее на разряжающиеся частицы, благодаря чему снижается энергия активации разряда. Поскольку электрич. поле в значит. степени обусловлено строением двойного электрического слоя, П. оказывается зависящим от концентрации постороннего электролита и адсорбирующихся веществ, влияющих на распределение потенциала в двойном слое. На повышении П. основано действие мн. ингибиторов коррозии металлов (см. Ингибиторы химические), что является одной из положительных сторон П. В то же время П. в пром. электролизе, неизбежно связанное с дополнительным расходом энергии, приводит к увеличению себестоимости продукции.

Лит.: Кинетика электродных процессов, М., 1952 (авторский колл. под рук. А. Н. Фрумкина); Скорчеллетти В. В., Теоретическая электрохимия, Л., 1959; Антропов Л. И., Теоретическая электрохимия, 2 изд., М., 1969. Л. И. Кришталик.

ПЕРЕНАПРЯЖЕНИЕ в электротехнике, повышение напряжения, представляющее опасность для изоляции электрич. установки. Правильный учёт П. имеет большое экономич. и технич. значение при выборе изоляции и мер защиты электрической сети, особенно
при напряжениях св. 10 кв. Различают внутренние и грозовые (атмосферные) П. Внутренние П. возникают в электрич. установках при резких изменениях режима их работы, гл. обр. в результате коммутаций (при включениях или отключениях тока, при коротких замыканиях на землю и т. п.). Коммутация сопровождается переходным процессом, после к-рого устанавливается новый режим работы установки. Соответственно различают кратковременные (порядка единиц и десятков мсек) коммутационные П. и длительные П. установившегося режима. Коммутационные П., вызываемые повторными зажиганиями и гашениями электрич. дуги в цепях с ёмкостной проводимостью, получаются при отключении ненагруженных линий, при замыкании на землю через дугу одной из фаз трёхфазной системы с изолированной нейтралью и т. д. При отключении ненагруженной линии, к-рую можно в нек-ром приближении рассматривать как ёмкость (рис. 1, а), дуга, загорающаяся между контактами выкл