загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

R>


КОСМОВИДЕНИЕ, космическое телевидение, непосредственная передача и приём по сети телевиз. вещания изображений с борта космич. аппарата, находящегося в космич. пространстве или на поверхности др. планеты. Радиосигналы изображений, посланные бортовой аппаратурой космич. станции, принимаются земной станцией радиосвязи и затем передаются на телецентр, откуда ретранслируются по сетям телевидения СССР, стран Европы и Америки. Начало К. положено передачей телевиз. изображений лётчиков-космонавтов А. Г. Николаева и П. Р. Поповича с борта космич. кораблей «Восток-3» и «Восток-4» в авг.

1962. Наибольшая дальность К. достигнута в дек. 1968 при передаче изображения во время облёта Луны космическим кораблём «Аполлон-8» с космонавтами Ф. Борманом, Дж. Ловеллом и У. Андерсом на борту.

КОСМОГОНИЯ(греч. kosmogonia, от kosmos -мир, Вселенная и gone, goneia- рождение), область науки, в к-рой изучается происхождение и развитие космич. тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел - Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов. Изучение космогонич. процессов является одной из гл. задач астрофизики. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще. В совр. К. широко используются законы физики и химии.

Космогонич. гипотезы 18-19 вв. относились гл. обр. к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретич. астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа к-рых была выяснена только в 20-х гг.

Процессы формирования и развития большинства космич. тел и их систем протекают чрезвычайно медленно и занимают миллионы и миллиарды лет. Однако наблюдаются и быстрые изменения, вплоть до процессов взрывного характера. При изучении К. звёзд и галактик можно использовать результаты наблюдений многих сходных объектов, возникших в разное время и находящихся на разных стадиях развития. Однако, изучая К. Солнечной системы, приходится опираться только на данные о её структуре и о строении и составе образующих её тел.



Очерк истории космогонических исследований. После общих идей о развитии небесных тел, высказанных ещё греч. философами 4-1 вв. до н. э. (Левкипп, Демокрит, Лукреций), наступил многовековой период господства теологии. Лишь в 17 в. Р. Декарт отбросил миф о сотворении мира и нарисовал картину образования всех небесных тел в результате вихревого движения мельчайших частиц материи. Фундамент науч. планетной К. заложил И. Ньютон, к-рый обратил внимание на закономерности движения планет. Открыв осн. законы механики и закон всемирного тяготения, он пришёл к выводу, что устройство планетной системы не может быть результатом случайного стечения обстоятельств. В 1745 Ж. Бюффон высказал гипотезу, что планеты возникли из сгустков солнечного вещества, исторгнутых из Солнца ударом огромной кометы (в то время кометы считались массивными телами). В 1755 И. Кант опубликовал книгу «Всеобщая естественная история и теория неба...», в к-рой впервые дал космогонич. объяснение закономерностям движения планет (см. Канта гипотеза). В кон. 18 в. В. Гершель, наблюдая небо в построенные им большие телескопы, открыл туманности овальной формы, обладающие различными степенями сгущения к центральному яркому ядру. Возникла гипотеза об образовании звёзд из туманностей путём их «сгущения». Опираясь на эти наблюдения Гершеля и на закономерности движения планет, П. Лаплас выдвинул гипотезу о происхождении Солнечной системы (см. Лапласа гипотеза), во многом сходную с гипотезой Канта. (Когда интересуются гл. обр. идеей ес-теств. образования Солнечной системы из протяжённой рассеянной среды, часто говорят о единой гипотезе Канта - Лапласа.) Гипотеза Лапласа быстро завоевала признание и благодаря ей астрономия оказалась в числе наук, первыми внёсших идею развития в совр. естествознание. Однако на протяжении 19 в. в гипотезе Лапласа выявлялись всё новые и новые трудности, преодолеть к-рые в то время не удалось. В частности, не удалось объяснить, почему совр. Солнце вращается очень медленно, хотя ранее, во время своего сжатия, оно вращалось столь быстро, что происходило отделение вещества под действием центробежной силы.

В кон. 19 в. появилась гипотеза амер. учёных Ф. Мультона и Т. Чемберлина, предполагавшая образование планет из мелких твёрдых частиц, названных ими «планетезималями». Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путём застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в пла-нетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет. В 20-30-х гг. 20 в. широкой известностью пользовалась гипотеза Дж. Джинса, считавшего, что планеты образовались из раскалённого вещества, вырванного из Солнца притяжением пролетевшей поблизости массивной звезды (см. Джинса гипотеза).

Идея об образовании звёзд путём сгущения рассеянного туманного вещества сохранилась до нашего времени и разделяется большинством исследователей. После открытия механического эквивалента тепла была подсчитана энергия, освобождающаяся при сжатии звезды (Г. Гельмгольц, 1854; У. Томсон, 1862). Оказалось, что её хватило бы для поддержания излучения Солнца в течение 107 - 108 лет. В то время такой срок казался достаточным. Но позже изучение истории Земли показало, что Солнце излучает несравненно дольше. В нач. 20 в. проблему источников энергии звёзд безуспешно пытались решить с помощью радиоактивных элементов, в то время лишь недавно открытых. Установление взаимосвязи массы и энергии, показавшее, что звёзды, излучая, теряют массу, привело к гипотезам о возможности аннигиляции вещества в недрах звёзд, т. е. превращения вещества в излучение. В этом случае превращение массивных звёзд в звёзды малой массы длилось бы 1013-1015 лет. Правильной оказалась гипотеза о трансмутации элементов, т. е. об образовании более сложных атомных ядер из простых, в первую очередь - гелия из водорода. В 1938-39 были выяснены конкретные ядерные реакции, могущие обеспечить излучение звёзд [К. Вейцзеккер (Германия), X. Бете], и это явилось началом совр. этапа развития звёздной К.

В разработке К. галактик делаются лишь первые шаги. Проводится классификация галактик и их скоплений. Изучаются эволюц. изменения звёзд и газовой составляющей галактик, их хим. состава и др. параметров. Изучается природа начальных возмущений, развитие к-рых привело к распаду расширяющегося газа Метагалактики на отд. сгущения. Рассчитывается, как зависят морфологический тип и др. свойства галактик от массы и вращения этих первичных сгущений. Большое внимание привлекают компактные плотные ядра, имеющиеся у ряда галактик. Изучается природа мощного радиоизлучения, к-рым обладают нек-рые галактики, и связь его с взрывными процессами в ядрах. Мощные взрывы, происходящие в квазарах и ядрах активных галактик - сейфертовских, N-ra-лактик и др.,- представляют собой существ, этапы эволюции галактик. К. развивается, опираясь на большое количество фактов, охватывающих самые различные свойства небесных тел.



Планетная космогония. При выяснении вопроса, в каком состоянии находилось ранее вещество, ныне образующее планеты, важную роль играют закономерности движения планет - их обращение вокруг Солнца в одном направлении по почти круговым орбитам, лежащим почти в одной плоскости, - и деление планет на 2 группы, отличающиеся по массе и составу,- группу близких к Солнцу планет земного типа и группу далёких от Солнца планет-гигантов. При выяснении вопроса о том, откуда взялось около Солнца допланетное вещество, важную роль играет проблема распределения момента количества движения (МКД) между Солнцем и планетами: почему всего 2% общего МКД всей Солнечной системы заключено в осевом вращении Солнца, а 98% приходится на орбитальное движение планет, суммарная масса которых в 750 раз меньше массы Солнца?

В 40-х гг. 20 в., после крушения гипотезы Джинса, планетная К. вернулась к классич. идеям Канта и Лапласа об образовании планет из рассеянного вещества (см. Шмидта гипотеза). В наст, время (70-е гг. 20 в.) является общепризнанным, что большинство планет аккумулировалось из твёрдого, а Юпитер и Сатурн также и из газового вещества. По-видимому, существовавшее вблизи экваториальной плоскости Солнца газо-во-пы левое облако простиралось до современных границ Солнечной системы.

Исходя из господствующих представлений об образовании Солнца из сжимающейся и вращающейся туманности, большинство астрономов считает, что прото-планетное облако той или иной массы отделилось под действием центробежной силы от этой туманности на заключит, стадии её сжатия [Ф. Хойл (Великобритания), А. Камерон (США), Э. Шацман (Франция)]. Но, в отличие от Лапласа, рассматривавшего это отделение чисто механически, сейчас учитываются эффекты, связанные с наличием магнитного поля и корпускулярного излучения Солнца. Именно это позволило объяснить распределение МКД между Солнцем и планетами в рамках гипотез о совместном образовании Солнца и протопланетного облака. Наряду с этими гипотезами высказывались гипотезы о захвате вещества уже сформировавшимся Солнцем (О. Ю. Шмидт, X. Алъфвен).

Если протопланетное облако было первоначально горячим и состояло только из газов, то твёрдые пылинки образовались в ходе его охлаждения. Сначала к онденсировались наименее летучие вещества, в т. ч. силикаты и железо, а затем - всё более и более летучие. Внутр. зона протопланетного облака прогревалась Солнцем и там могли образоваться только нелетучие, в основном каменистые пылинки, тогда как в холодной внешней зоне конденсировались также и летучие вещества. Хотя присутствие пыли делало облако непрозрачным, что способствовало очень низкой темп-ре внешней зоны, наиболее летучие вещества - водород и гелий - не могли конденсироваться даже там.

Если же протопланетное облако первоначально было холодным и пылинки состояли в основном из летучих веществ, то они могли сохраниться во внеш. холодной зоне облака, тогда как во внутр. зоне летучие вещества испарялись, оставляя лишь небольшие каменистые остатки.

В космич. (солнечном) веществе летучих веществ много больше, чем нелетучих. Поэтому должно было возникнуть огромное различие не только в составе, но и в общем количестве пылевого вещества во внутр. и внеш. зонах. В дальнейшем эти зональные различия привели к различиям в составе и массах планет земной группы и планет-гигантов.

Протекание процесса конденсации (или испарения) пылинок в зоне астероидов пытаются обнаружить путём тщат. анализа метеоритов, к-рые являются обломками астероидов и в нек-рых случаях могут служить образцами допланетного вещества, мало изменившихся при последующих процессах. Нек-рые исследователи видят в результатах такого анализа указания на то, что конденсация пылинок и их аккумуляция в крупные тела протекали параллельно. Однако это не удаётся согласовать с результатами теоре-тич. расчётов, указывающими на то, что длительность аккумуляции должна была в сотни или тысячи раз превосходить длительность остывания и конденсации.

Образование планет из протопланетного облака наиболее полно исследовано О. Ю. Шмидтом и его сотрудниками и сторонниками. Процесс можно условно разделить на 2 этапа. На первом этапе длившемся, вероятно, менее 10s лет из пылевой компоненты облака образовалось множество «промежуточных» тел размером в сотни км. На втором этапе длительностью ок. Ю8 лет из роя «промежуточных» тел и их обломков аккумулировались планеты. (У наиболее далёких планет - Урана, Нептуна и Плутона, вещество к-рых было рассеяно по огромным кольцевым зонам, второй этап мог длиться ок. Ю9 лет.) Самые крупные планеты - Юпитер и Сатурн - на основной стадии аккумуляции вбирали в себя не только твёрдые тела, но и газы.

Разные гипотетич. варианты процесса образования облака ведут к разным вариантам протекания первого этапа. «Промежуточные» тела должны были образоваться либо в результате собирания пыли в тонкий диск и распада этого диска на сгущения, либо в результате коагуляции пылинок, т. е. их «слипания».

Протекание аккумуляции планет из роя «промежуточных» тел практически не зависит от механизма их образования. Сперва они двигались по круговым орбитам в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное вещество - остатки «первичной» пы ли и обломки, образовавшиеся, когда «промежуточные» тела сталкивались с большими относит, скоростями. Гравитац. взаимодействие «промежуточных» тел, усиливающееся по мере их роста, постепенно изменяло их орбиты, увеличивая средний эксцентриситет и средний наклон к центральной плоскости. Те из «промежуточных» тел, к-рые вырвались вперёд в процессе роста, оказались зародышами будущих планет. При объединении многих тел в планеты произошло усреднение индивидуальных свойств движения отд. объединяющихся тел, и потому орбиты планет получились почти круговыми и компланарными. Анализ процесса аккумуляции планет из роя твёрдых тел позволил О. Ю. Шмидту указать путь к объяснению происхождения прямого вращения планет и закона планетных расстояний .

Рост планет земной группы прекратился тогда, когда они вобрали в себя практически всё твёрдое вещество, имевшееся в районе их орбит (только у Марса часть вещества из его «зоны питания», вероятно, была поглощена массивным Юпитером). Но у планет-гигантов рост прекратился тогда, когда они действием своего притяжения выбросили из зоны своего формирования все «промежуточные» тела и их обломки, а также газы (в рассеянии последних важную роль могло сыграть интенсивное корпускулярное излучение молодого Солнца).

Неупругие столкновения тел, происходившие в окрестностях растущих планет, приводили к тому, что часть тел переходила на спутниковые орбиты. В результате вокруг планет возникали рои твёрдых тел и частиц. Из них аккумулировались спутники планет. Луна, вероятно, аккумулировалась из околоземного роя на расстоянии ок. 10 земных радиусов, а затем отодвинулась на совр. расстояние от Земли в результате приливного взаимодействия с Землёй. Существуют и др. гипотезы происхождения Луны: гипотеза Дж. Дарвина, согласно к-рой Луна отделилась от Земли, и гипотеза о захвате Землёй Луны, образовавшейся на орбите, близкой к земной. Радиус орбиты Луны после захвата был мал, а потом увеличился, как и в упомянутой выше гипотезе. Возможность плавного отделения Луны от Земли, предполагавшаяся Дарвином, опровергнута работами А. М. Ляпунова и Э. Картона. У Юпитера и Сатурна из околопланетных роёв аккумулировались системы спутников, движущихся в направлении вращения планет по круговым орбитам, лежащим в экваториальной плоскости планеты. Эти системы спутников подобны Солнечной системе. Те спутники Юпитера, Сатурна и Нептуна, к-рые обладают обратным движением, были, вероятно, захвачены из числа «промежуточных» тел. Остатками этих тел и их обломков являются совр. астероиды (каменистые тела внутр. зоны) и ядра комет (ледяные тела внеш. зоны). Столкновения астероидов друг с другом ведут к их дроблению. Как показывает изучение метеоритов, структура нек-рых из них изменена под действием высокого давления (до сотен килобар), возникающего при столкновениях. Содержание в метеоритах короткоживущих изотопов, возникающих под действием космических лучей, показывает, что дробления, породившие эти метеориты, произошли 107- 108 лет назад. Ледяные ядра комет образуют облако вокруг планетной системы, простирающееся до 100-150 тыс. а. е. от Солнца. Там при низкой температуре льды сохраняются неограниченно долго. Под действием звёздных, а потом и планетных возмущений отдельные ядра переходят на меньшие орбиты и превращаются в короткопериодич. кометы. Часто приближаясь к Солнцу, они испаряются и разрушаются за неск. десятков или сотен оборотов. Измерения радиоактивных изотопов и продуктов их распада показывают, что возрасты древнейших метеоритов составляют 4,7 млрд. лет. Поскольку астероиды, являющиеся родительными телами метеоритов, быстро аккумулировались в самом начале образования Солнечной системы, этот возраст принимается за возраст всей Солнечной системы. Измерение возраста лунных образцов показывает, что Луна образовалась в ту же эпоху, что и Земля. Излияния тёмных лав, заполнивших впадины лунных «морей», произошли на миллиард лет позже (3,1-3,6 млрд. лет назад).

При аккумуляции планет происходил их разогрев, но у планет земной группы средняя темп-pa поверхности определялась в основном нагревом от Солнца с влиянием парникового эффекта. Из более глубоких слоев тепло выходит медленно. Достаточно было остатка в 3-4%, чтобы нагреть недра Земли и Венеры до 1000- 1500 °С, а недра планет-гигантов до десятков тысяч градусов. Начальный разогрев Земли и Луны был связан как с выделением гравитац. энергии при их сжатии, так, вероятно, и с приливными деформациями этих двух первоначально близких тел. Дальнейшая эволюция их и др. планет земной группы определялась в основном накоплением тепла, выделившегося при медленном распаде радиоактивных элементов - урана, тория и др.,- имеющихся в ничтожно малых количествах во всех горных породах. Разогрев и частичное расплавление недр этих планет привело к выплавлению коры и выделению газов и паров. Последние у планет малой массы (Меркурий, Марс, Луна) полностью или в значит, мере рассеялись в пространство, а у более массивных планет в основном сохранились, образовав атмосферу и гидросферу (Земля) либо только атмосферу (Венера).

Лит.: Вопросы космогонии, т. 1 - 10, М., 1952-64; Шмидт О. Ю., Четыре лекции о теории происхождения Земли, 3 изд., М., 1957; Л е в и н Б. Ю., Происхождение Земли, «Изв. АН СССР. Физика Земли», 1972, № 7; Сафронов В. С., Эволюция допланетного облака и образование Земли и планет, М., 1969; Symposium of the origine of the Solar system, Niece, april 1972, P., 1972. Б.Ю.Левин.



Звёздная космогония. Проблемы происхождения и эволюции звёзд, а также звёздных систем изучаются в разделе К., наз. звёздной К. В ходе эволюции звезда проходит стадии, к-рые определяются изменениями условий механич. и теплового равновесия в её недрах (см. Звёзды). В результате ядерных реакций превращения водорода в гелий (к-рые служат источником энергии звёзд главной последовательности на Герцшпрунга - Рессел-ла диаграмме и части звёзд-гигантов) постепенно изменяется хим. состав ядра звезды, причём ср. молекулярный вес газа увеличивается, ядро уплотняется и разогревается. Исследования показывают, что это сопровождается увеличением светимости и радиуса звезды. На диаграмме Герцшпрунга - Ресселла звезда, в начале эволюции располагавшаяся на гл. после довательности, приподнимается над ней. По мере дальнейшего выгорания водорода у звёзд малой массы образуется ядро с плотностью, в сотни тыс. раз большей плотности воды, и темп-рой св. 107 К. Газ при такой плотности оказывается вырожденным (см. Вырожденный газ). В ядре звезды водорода уже нет, вследствие чего ядерные реакции идут только в оболочке ядра, где темп-pa достаточно высока и имеется водород. Звезда вздувается, на этой стадии её радиус в десятки раз больше, чем тот, к-рый звезда имела на гл. последовательности; светимость также сильно увеличивается, и звезда превращается в гиганта. Точка, соответствующая звезде на диаграмме Герцшпрунга - Ресселла, вследствие эволюции звезды перемещается вправо вверх. Постепенно оболочка, расширяясь, становится прозрачной, и сквозь неё видно горячее ядро. Ультрафиолетовое излучение ядра заставляет газ оболочки светиться, из звезды-гиганта образуется планетарная туманность. После остывания ядра звезда превращается в белый карлик, к-рый не имеет источников энергии и медленно остывает в течение миллиардов лет.

У звёзд, имеющих на начальной стадии неск. большую массу, эволюц. изменения протекают иначе. У таких звёзд темп-ра ядра повышается до 120-140 млн.градусов и начинается реакция превращения гелия в углерод; при ещё более высоких темп-pax синтезируются и более тяжёлые ядра. Вследствие мощного выделения энергии ядро звезды расширяется. Соответствующая точка на диаграмме Герцшпрунга - Ресселла сложным образом движется между ветвью гигантов и левой частью гл. последовательности. Сбросив ок. половины массы, звезда также превращается в белый карлик.

Ещё более массивные звёзды (до 2 масс Солнца) скачком переходят от гл. последовательности в область красных сверхгигантов. В их ядрах образуются всё более тяжёлые элементы, вплоть до наиболее плотно упакованного ядра атома железа. При дальнейшем повышении темп-ры ядра железа превращаются в ядра др. элементов, но при этом энергия уже не выделяется, а поглощается, и ядро звезды не нагревается при сжатии. Давление вырожденного газа не может уравновесить вес ядра, если его масса больше 1,4 массы Солнца, и оно продолжает сжиматься до тех пор, пока плотность вещества в нём не будет того же порядка, что и плотность атомных ядер. В это время под действием огромного давления электроны объединяются с ядрами, образуя нейтроны. Такими нейтронными звёздами, имеющими радиус ок. 10 км, являются пульсары. Часть гравитац. энергии, выделяющейся при сжатии, передаётся оболочке, к-рая выбрасывается со скоростью неск. тыс. км/сек: происходит вспышка сверхновой звезды II типа. Сверхновые звёзды I типа образуются в конце эволюции звёзд меньшей массы.

Если масса ядра звезды превышает 2 массы Солнца, то сжатие не останавливается даже при ядерной плотности и происходит с увеличивающейся скоростью. Когда скорость падения вещества к центру звезды приближается к скорости света, звезда, в силу эффектов теории относительности, как бы застывает, перестаёт излучать (см. Коллапс гравитационный). Обнаружить такую коллап-сировавшую звезду можно только по её гравитации или по излучению падающего на неё газа. Время эволюции звёзд существенно зависит от их массы. Для Солнца оно составляет Ю10 лет, для звёзд спектр, класса О - неск. млн. лет (у таких звёзд запасы водорода быстро истощаются). Поэтому все наблюдаемые горячие звёзды - молодые, недавно образовавшиеся. Концентрация молодых звёзд в скопления и ассоциации показывает, что звёзды образуются группами. Связь этих групп с межзвёздной средой, в частности с тёмной полосой сжатого газа на кромке спиральных ветвей, и ряд др. фактов привели к представлению, что звёзды формируются при сжатии и дроблении больших газово-пылевых облаков на отд. сгустки, к-рые продолжают сжиматься под действием собств. тяготения.

На начальной стадии эволюции (до момента прихода на гл. последовательность диаграммы Герцшпрунга - Ресселла) звезда светит за счёт энергии гравитац. сжатия. В это время точки, соответствующие звёздам, находятся на диаграмме выше и правее своего будущего положения на гл. последовательности. Типичными представителями молодых звёзд средней массы, ещё не вполне сжавшимися, являются звёзды типа Т Тельца. Звёзды очень малой массы сжимаются миллиарды лет; представителями таких сжимающихся звёзд являются вспыхивающие звёзды типа UV Кита.

При образовании звёзд большую роль играет магнитное поле. Под действием сил гравитации межзвёздный газ скользит вдоль силовых линий, собирается с большого расстояния в плотные комплексы. Когда масса комплекса становится достаточно большой, он сжимается и поперёк силовых линий. При сжатии комплекса его вращение ускоряется. Дальнейшее сжатие становится возможным только при условии передачи части МКД окружающему газу. Это осуществляется вследствие закручивания силовых линий, натяжение к-рых передаёт вращение во внеш. среду.



Галактическая космогония. Звёзды разных типов составляют в Галактике определённые подсистемы, к-рые образовались на различных стадиях формирования Галактики (см. Звёздные подсистемы). Сначала Галактика была протяжённым медленно вращающимся газовым облаком. Газ сжимался к центру; в процессе этого сжатия из него формировались звёздные скопления, большая часть к-рых позже рассеялась. Звёзды, образовавшиеся в это время, движутся по очень вытянутым орбитам и заполняют слабо сплюснутый сфероид - тот объём, в к-ром ранее был газ. Эти звёзды входят в звёздные подсистемы, относящиеся к сферич. составляющей Галактики. В отличие от звёзд, к-рые движутся практически без трения, газ теряет кинетич. энергию хаотических движений и сжимается. Радиус сфероида уменьшается, он ускоряет своё вращение, пока центробежная сила не уравновесит тяготение на экваторе. После этого сжатие происходит гл. обр. к экваториальной плоскости. На этой стадии образовались подсистемы, относящиеся к промежуточной составляющей Галактики. После образования подсистем плоской составляющей газ уже не сжимался; он удерживался не столько движениями, сколько давлением магнитного поля. Звёзды, образовавшиеся из газа на этой стадии, входят в подсистемы плоской составляю щей. Горячие звёзды и скопления, в состав к-рых они входят,- молодые, они входят также в плоскую составляющую. В других составляющих Галактики массивных звёзд нет, их эволюция уже закончилась. Различаются и скопления в разных составляющих. В плоских они содержат по нескольку сотен или тысяч звёзд и называются рассеянными, в сферических - десятки и сотни тысяч звёзд и называются по их виду шаровыми скоплениями. В плоских составляющих звёзды движутся в среднем по орбитам, близким к круговым, и колеблются относительно галактич. плоскости. В промежуточных они движутся по более вытянутым орбитам, а в сферич. составляющих плоскости вытянутых орбит ориентированы почти хаотически. Чем толще подсистема, тем больше дисперсия скоростей звёзд перпендикулярно плоскости.

Помимо возрастных и кинематических различий, подсистемы различаются и по хим. составу звёзд. В подсистемах промежуточных составляющих содержание тяжёлых элементов по отношению к водороду и гелию в несколько раз меньше, чем в плоских, а в сферических оно меньше в десятки и даже сотни раз, причём чем старше группа звёзд и чем больше её среднее расстояние от плоскости, тем меньше содержание тяжёлых элементов. Эта особенность объясняется тем, что тяжёлые элементы образуются внутри звёзд при ядерных реакциях и при взрывах сверхновых. Вместе с оболочками сиерхновых и со звёздным ветром тяжёлые элементы попадают в межзвёздную среду, и следующее поколение звёзд образуется из газа, уже обогащённого этими элементами. Гелий тоже образуется при ядерных реакциях, но осн. часть его образовалась, по-видимому, на дозвёзд-ной стадии эволюции Вселенной. Различие хим. состава влияет на спектр и на внутр. строение звёзд. В частности, субкарлики - это тоже звёзды гл. последовательности, но в сферич. и промежуточных подсистемах они не совпадают с главной последовательностью из-за отличия хим. состава, искажающего их цвет.

Звёзды и межзвёздная среда представляют собой 2 фазы эволюции вещества галактик. Со временем межзвёздная среда истощится, в Галактике исчезнут молодые звёзды, большая часть массы будет сосредоточена в звёздах малой массы, к-рые эволюционируют медленно, а также в остатках звёзд: в белых карликах, нейтронных звёздах и более массивных остатках, находящихся в состоянии коллапса.

В изложенной концепции существенно, что как сами звёзды, так и галактики образовывались в результате конденсации первоначально диффузного газа. Эта концепция вытекает из огромного количества фактов, в частности из упомянутого различия подсистем. Действительно, более молодые звёзды включают в большом количестве те элементы, к-рые рассеиваются в межзвёздной среде при взрывах сверхновых. Форма подсистем разных возрастов показывает, что вещество, из к-рого образовались звёзды, уплощалось; но уплощаться может только диффузная среда, т. к. плотные тела движутся почти без трения. С помощью радио-астрономич. наблюдений были обнаружены компактные области, окружённые плотным холодным газом. Это явление может быть интерпретировано как резуль тат образования горячей звезды в центре холодного плотного сгустка.

В. А. Амбарцумян выдвинул другую космогонич. концепцию, основанную на том факте, что в объектах самых разных масштабов - от звёзд-карликов до ядер галактик - наблюдаются взрывы, проявления нестационарности, а также на предполагаемом распаде нек-рых звёздных систем и скоплений галактик. Согласно этой концепции, в ядрах галактик содержится сверхплотное чдозвёздное» вещество, к-рое и служит материалом для образования галактик. Входящие в состав галактик звёздные ассоциации также образуются из «осколков» этого вещества; наблюдаемые на поверхности звёзд-карликов взрывы объясняются также распадом чдозвёздного» вещества. Скопления галактик также предполагаются относительно молодыми (в астрономическом смысле этого слова), образовавшимися из чдозвёздного» вещества. Свойства чдозвёздного» вещества ещё неизвестны. Однако в концепции В. А. Амбарцумяна предполагается, что для этого вещества фундаментальные законы совр. физики могут оказаться несправедливыми.

Лит.: Шварцшильд М., Строение и эволюция звезд, пер. с англ., М., 1961; Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959 Кап дан С. А., Физика звезд, 2 изд. М-, 1970; Проблемы современной космогонии под ред. В. А. Амбарцумяна, 2 изд., М. 1972. С. Б. Пикелънер



КОСМОДЕМЬЯНСКАЯ Зоя Анатольевна (Таня) (13.9.1923, с. Осиновые Гаи Тамбовской обл.,-29.11.1941, дер. Петри-щево Верейского р-на Моск. обл.), советская партизанка, героиня Великой Отечеств, войны 1941-45. Род. в семье служащего. Чл. ВЛ КСМ с 1938. Училась в 201-й ср. школе Москвы. В окт. 1941, будучи ученицей 10-го класса, добровольцем ушла в партизанский отряд. У дер. Обухове, близ Наро-Фоминска, с группой комсом ольцев - партизан перешла через линию фронта на занятую нем. оккупантам и территорию. В кон. нояб. 1941 в дер. Петрищево при выполнениибоевого задания была схвачена фашистами. Несмотря на чудовищные пытки и издевательства палачей, не выдала товарищей, не открыла своего настоящего имени, назвавшись Таней. 29 нояб. 1941 была казнена. 16 февр. 1942 К. посмертно присвоено звание Героя Сов. Союза. Преданность социалистич. Родине, верность делу коммунизма сделали имя воспитанницы Ленинского комсомола легендарным. К. посвящены мн. произведения сов. поэтов, писателей, драматургов, художников, скульпторов; её именем названы улицы мн. городов СССР. На Минском шоссе близ дер. Петрищево К. поставлен памятник (скульпторы О. А. Иконников и В. А. Фёдоров).С 1942 могила К. находится на Новодевичьем кладбище в Москве; на месте первоначального захоронения К. в дер. Петрищево установлена мемориальная плита.

Лит.: Народная героиня. (Сб. материалов о Зое Космодемьянской), М., 1943: Космодемьянская Л. Т., Повесть о Зое и Шуре, М., 1966.

КОСМОДРОМ (от космос и греч. dromes - бег, место для бега), комплекссооружений, оборудования и земельных участков, предназначенный для приёма, сборки, подготовки к пуску и пуска космических ракет. Нек-рые К. включают земельные участки для падения отработанных ступеней ракет и один из измерит, пунктов командно-измерит. комплекса. Гл. объекты К.- технич. позиция и стартовый комплекс (рис. 1). Вспомогат. и обслуживающие объекты и службы К.: измерит, пункты с кинотеодолитными станциями и радиотехнич. системами для измерения параметров начальных участков и в первую очередь активных траекторий движения ракет; расчётные бюро с ЭВМ для вычисления полётных заданий и траекторий движения ракет; зона хранения компонентов топлива; иногда заводы для производства жидкого кислорода, азота, водорода; система энергоснабжения (теплоэлектроцентрали, электросиловые станции, трансформаторные подстанции и линии электропередач); жилой городок с управленч. службами, учебным центром и комплексом бытовых и культурно-массовых учреждений; система водоснабжения; система связи и телевидения; ремонтная база и складское хозяйство; аэродром; подъездные пути и трансп. коммуникации, включая ж.-д. узел.

Техническая позиция (ТП) - комплекс сооружений с общетехнич. и специальными технологич. оборудованием и подъездными путями, обеспечивающий приём, хранение и сборку ракеты-носителя (РН) и космич. объектов ( КО), их испытания, заправку и пристыковку КО к РН. На ТП располагаются монтаж-но-испытат. корпус (МИК), монтажно-испытат. корпус КО, заправочная станция КО, компрессорная станция с реси-верной, электросиловая или трансформаторная подстанция и служебные здания. Для твердотопливных РН в состав ТП дополнительно могут входить типичное хранилище секций твердотопливных ускорителей, здание их осмотра, хранилище секций, готовых к использованию, и здание сборки и пристыковки твердо-топливных ускорителей. Ступени и узлы РН пвступают в МИК, иногда для избежания транспортировки больших ступеней РН в собранном виде завершающие сварочные операции по изготовлению крупных узлов производятся в МИК. Сборка РН выполняется двумя осн. способами: горизонтальная сборка отд. ступеней и РН в целом и пристыковка к ней КО; вертикальная сборка отд. ступеней, сборка всей РН и пристыковка КО в МИК в вертикальном положении на передвижной части пусковой системы (рис. 2) . Первый способ наиболее распространён. Для РН, работающих на жидком топливе и имеющих твердотопливные ускорители, строятся 2 МИК: для сборки и испытаний жидкостной ракеты и для сборки твердотопливных ускорителей и пристыковки их к жидкостной ракете. После сборки РН проходит автономные и комплексные испытания. Параллельно производятся сборка и испытания КО. В комплект испытательного оборудования для КО входят также барокамеры для испытаний КО в целом или его элементов на герметичность в условиях глубокого вакуума. Заправка КО компонентами топлива производится на заправочной станции ТП. Криогенными компонентами топлива (кислородом,водородом, фтором, аммиаком и т. п.) КО заправляется на стартовой позиции. Из запра-

вочной станции КО перевозится в МИК, где пристыковывается к РН. После проверки правильности стыковки космич. ракета транспортируется на стартовую позицию.
Стартовый комплекс (СК) - комплекс спец. технологич. оборудования, сооружений с общетехнич. оборудованием, подготовленных участков земли с подъездными путями, необходимыми для доставки космич. ракеты на СК, установки на пусковую систему, испытаний, заправки и пуска.В состав спец. сооружений СК входят: пусковая установка; командный пункт; хранилища компонентов топлива и устройства для заправки ими РН и КО; трансформаторная подстанция и резервная дизель-электрич. станция; холодильные установки или холодильный центр и др. СК может иметь неск. стартовых площадок (табл.). На стартовой позиции транспортно-устано-вочный агрегат поднимает ракету в вертикальное положение и опускает её на пусковую систему. Стационарные установщики монтируются около пусковой системы; ж.-д. транспортно-установоч-ная тележка с ракетой наезжает на стрелу-платформу и вместе с ней поднимается в вертикальное положение. Пусковая система обеспечивает приём, вертика-лизацию и удержание ракеты, подвод к ней электрич. заправочных, пневматич. дренажных и пр. коммуникаций и пуск ракеты. Пусковые системы могут иметь кабель-заправочные мачты, механизмы стыковки электро- и пневморазъёмов, наполнительных и дренажных соединений. Мачты выполняются отбрасываемыми и стационарными. Кабель-заправочные мачты иногда выполняют функции агрегатов обслуживания. Для СК, не имеющих стационарных заправочных средств, на стартовую площадку подаются передвижные заправщики. Компоненты топлива обычно дозируются автоматически по датчикам уровней топлива в баках ракеты. Применяется также дозировка счётчиками-расходомерами. Для заправки сжатыми газами станции газоснабжения могут иметь воздушные компрессоры высокого давления, гелиевые компрессоры и газификаторы жидкого азота с плунжерными насосами высокого давления. Перед заправкой производится термостатирование топлива для обеспечения допустимой разницы темп-р окислителя и горючего; максимальной и минимальной темп-р компонентов, поступающих в двигатель ракеты; требуемого значения плотности топлива; переохлаждения криогенных компонентов. Переохлаждение продолжается в течение всего времени нахождения ракеты на пусковой системе. Если переохлаждение не применяется, испарение компонентов в ракете компенсируется автома-тич. подпиткой. Все процессы подготовки к заправке, включая процессы хранения топлива, и заправка осуществляются обычно автоматически. Посадка космонавтов производится после окончания заправки РН и КО. Все операции предстартовой подготовки фиксируются на пульте пуска набором транспарантов готовно-стей. После полной готовности всех систем подаётся команда и включается автоматич. схема пуска.

Первый ИСЗ был запущен с космодрома Байконур (СССР), за рубежом космические ракеты запускались с К.: США - Ванденберг (Калифорния), мыс Кеннеди (Флорида), Уоллопс (Виргиния); Франция - Хаммагир (Алжир), Куру (Франц. Гвиана); Италия - Сан-Марко (у берегов Кении); Япония - Утиноура; КНР - Чанчэнцзе; Великобритания - Вумера (Австралия).

Лит.: Космонавтика, М., 1970 (Маленькая энциклопедия); «Aviation Week», 1965, ?. 83, № 1. p. 36-37. 41-43, 1966, ?. 84, № 25, p. 71-182;«Hydraulics and Pneumatics». 1967, v. 20, N2 12, p. 90-93; «Mechanical Engineering», 1969, ?. 91, №6 - 10; «SpaceflighU, 1971, ?. 13, № 2, p. 61 - 65.

Техническая характеристика американских стартовых комплексов

Характеристика комплекса

СК-39 для ракет-носителей «Сатурн-5»

СК-37 для ракет-носителей «Сатурн-1»

СК-40-41 для ракет-носителей «Титан-ЗС»
Общая площадь, га

48,6

48

8,4
Стоимость комплекса, млн. долл.

800

65

176
Количество стартовых площадок

21

22

2
Транспорт для перевозки ракет или их ступеней

Гусеничный транспорт

2 колёсных транспортёра для ступеней I и II

2 локомотива по 735,5 квт. (1000 л. с.)
Время подготовки ракет к пуску, сут

50-70

25

1
Время ремонта после пуска, суш

14-42

30-603

до 14

1 Одна площадка законсервирована; с неё был произведён только запуск «Аполлона-10». 2 Одна площадка законсервирована. 3 30-60 сут - время на подготовку к пуску и ремонт.




КОСМОИДНАЯ ЧЕШУЯ, чешуя древних кистепёрых и двоякодышащих рыб, наружная поверхность к-рой образована слоем космина (отсюда название) - сплошным "паркетом" тесно сомкнутых кожных зубов. Сверху К. ч. покрыта твёрдым эмалеподобным дентином, придающим ей характерный блеск. Космин подстилается слоем губчатой кости; в основании К. ч. лежит мощный слой пластинчатой кости - изопедина. В эволюции кистепёрых и двоякодышащих наружный и губчатый слои К. ч. постепенно редуцируются. У совр. кистепёрой рыбы латимерии на поверхности чешуи сохранились отд. бугорки дентина.

КОСМОЛОГИЧЕСКАЯ ПОСТОЯННАЯ, постоянная Л, к-рую А. Эйнштейн в 1917 ввёл в свои уравнения тяготения (1916), чтобы они могли иметь решения, описывающие стационарную Вселенную, и удовлетворяли требованию относительности инерции (см. Относительности теория). Физич. смысл введения К. п, заключается в допущении существования особых космич. сил (отталкивания при Л> 0 и притяжения при Л< 0), возрастающих с расстоянием. Поскольку требование стационарности Вселенной отпало с открытием разбегания галактик (см. Красное смещение), Эйнштейн в 1931 отказался от К. п. С тех пор обычно принималось, что А = 0. В настоящее время (70-е гг. 20 в.) допускается и др. возможность: К. п.- крайне малая (~10-55 см-2) величина.

Лит.: Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика, М., 1967. Г.И.Наан.

КОСМОЛОГИЧЕСКИЕ ПАРАДОКСЫ, затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом или достаточно большие её области. Так, при распространении на Вселенную второго начала термодинамики (без учёта гравитации) в прошлом делался вывод о необходимости тепловой смерти; возраст Метагалактики в теории нестационарной Вселенной (см. Космология) до 50-х гг. 20 в. оказывался меньше возраста Земли. Однако обычно под К. п. понимают два конкретных парадокса, возникающих при космо-логич. применении законов классической (ньютоновой) физики: фотометрический (парадокс Шезо - Ольберса, назв. по имени швейц. астронома Ж. Шезо, 1744, и нем. астронома Г. В. Ольберса, 1826) и гравитационный (парадокс Неймана - Зелигера, назв. по имени нем. учёных К. Неймана и X. Зелигера, 19 в.). Эти парадоксы (К. п. в узком смысле слова) преодолены релятивистской космологией. Классич. физика затрудняется объяснить, почему ночью темно: если повсюду в бесконечном пространстве стационарной Вселенной (или хотя бы в достаточно большой её области) имеются излучающие звёзды, то в любом направлении на луче зрения должна оказаться к.-н. звезда и вся поверхность неба должна представляться ослепительно яркой, подобной, напр., поверхности Солнца. Это противоречие с тем, что наблюдается в действительности, и наз. фотометрическим парадоксом. В релятивистской космологии он не возникает, поскольку из-за красного смещения яркость далёких объектов понижается. Гравитационный парадокс имеет менее очевидный характер и состоит в том, что закон всемирного тяготения Ньютона не даёт к.-л. разумного ответа на вопрос о гравитационном поле, создаваемом бесконечной системой масс (если только не делать очень специальных предположений о характере пространственного распределения этих масс). Для космо-логич. масштабов ответ даёт теория А. Эйнштейна, в к-рой закон всемирного тяготения уточняется для случая очень сильных гравитационных полей.

Лит.: Зельманов А. Л., Гравитационный парадокс, в кн.: физический энциклопедический словарь, т. 1, М., 1960; Фотометрический парадокс, там же, т. 5, М., 1966; То1man R. С., Relativity thermodynamics and cosmology, Oxf., 1934.

Г. И. Наан.

КОСМОЛОГИЯ (от космос и ...логия), учение о Вселенной как едином целом и о всей охваченной астрономич. наблюдениями области Вселенной как части целого; раздел астрономии. Выводы К. (модели Вселенной) основываются на законах физики и данных наблюдательной астрономии, а также на философских принципах (в конечном счёте - на всей системе знаний) своей эпохи. Важнейшим философским постулатом К. является положение, согласно к-рому законы природы (законы физики), установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы (распространены) на значительно большие области, в конечном счёте - на всю Вселенную. Без этого постулата К. как наука невозможна.

Космологич. теории разных эпох (а часто и относящиеся к одной и той же эпохе) существенно различаются в зависимости от того, какие физич. принципы и законы принимаются в качестве достаточно универсальных и кладутся в основу К. Степень универсальности принципов и законов не может быть проверена непосредственным путём, но построенные на их основе модели должны допускать проверку; для наблюдаемой области Вселенной ("астрономической Вселенной") выводы из глобальной модели должны подтверждаться наблюдениями (во всяком случае не противоречить им), а также предсказывать новые явления, к-рые ранее не наблюдались. Из необозримого множества моделей, к-рые можно построить, лишь очень немногие могут удовлетворить этому критерию. В 70-х гг. 20 в. этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности (в релятивистской К.) однородные изотропные модели нестационарной горячей Вселенной.



Историческая справка. В наивной форме космологич. представления зародились в глубочайшей древности в результате попыток человека осознать своё место в мироздании. Эти представления являются характерной составной частью различных мифов и верований. Более строгим логич. требованиям удовлетворяли космологич. представления античных философов школ Демокрита, Пифагора, Аристотеля (5-4 вв. до н. э.). Влияние Аристотеля на К. сохранялось на протяжении почти двух тысячелетий. Первая математическая модель Вселенной, основанная на всей совокупности данных астрономич. наблюдений, представлена в "Альмагесте" (2 в. н. э.); эта геоцентрическая система мира объясняла все известные в ту эпоху астрономич. явления и господствовала ок.полутора тыс. лет. За это время не было сделано практически никаких астрономич. открытий, но стиль мышления существенно изменился. Предложенная Н. Коперником (16 в.) гелиоцентрическая система мира, несмотря на противодействие христианского догматизма, получала всё более широкое признание, особенно после того как Г. Галилей, применив для астрономич. наблюдений телескоп, впервые (1-я пол. 17 в.) обнаружил факты, к-рые трудно было совместить с геоцент-рич. системой. Ещё до этого Дж. Бруно, в соответствии с учением Коперника, сделал философ, вывод о бесконечности Вселенной и отсутствии в ней к.-л. центра; этот вывод оказал большое влияние на всё последующее развитие К. Основанная на учении Коперника революция в К. явилась исходным пунктом революции в астрономии и естествознании в целом. Закон всемирного тяготения (И. Ньютон, 1685), в самом названии к-рого подчёркнута его космологич. универсальность, дал возможность рассматривать Вселенную как систему масс, взаимодействия и движения к-рых управляются этим единым законом. Однако при применении ньютоновой физики к бесконечной системе масс обнаружились т. н. космологические парадоксы.

Возникновение современной К. связано с созданием релятивистской теории тяготения (А. Эйнштейн, 1916) и зарождением внегалактической астрономии (20-е гг.). На первом этапе развития релятивистской К. главное внимание уделялось геометрии Вселенной (кривизна пространства-времени и возможная замкнутость пространства). Начало второго этапа можно было бы датировать работами А. А. Фридмана (1922-24), в к-рых было показано, что искривлённое пространство не может быть стационарным, что оно должно расширяться или сжиматься; но эти принципиально новые результаты получили признание лишь после открытия закона красного смещения (Э. Хаббл, 1929). На первый план теперь выступили проблемы механики Вселенной и её "возраста" (длительности расширения). Третий этап начинается моделями "горячей" Вселенной (Г. Га-мов, 2-я пол. 40-х гг.). Основное внимание теперь переносится на физику Вселенной - состояние вещества и физич. процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было очень необычным. Наряду с законом тяготения в К. приобретают большое значение законы термодинамики, данные ядерной физики и физики элемен-тарных частиц. Возникает релятивистская астрофизика, к-рая заполняет существовавшую брешь между К. и астрофизикой.



Геометрия и механика Вселенной. В основе теории однородной изотропной Все-ленной лежат два постулата: 1) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна; из этого следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии). 2) Во Вселенной нет к.-л. выделенных точек (однородность) и выделенных направлений (изотропия), т. е. все точки и все направления равноправны. Последнее утверждение часто называют космологич. постулатом, его можно назвать также обобщённым принципом Дж. Бруно. Если дополнительно предположить, что космологическая постоянная равна нулю, а плотность массы создаётся гл. обр. веществом (фотонами и нейтрино можно пренебречь), то космология, ур-ния приобретают особенно простой вид и возможными оказываются только две модели. В одной из них кривизна пространства отрицательна или, в пределе, равна нулю, пространство бесконечно (открытая модель); в такой модели все расстояния со временем неограниченно возрастают. В др. модели кривизна пространства положительна, пространство конечно (но столь же безгранично, как и в открытой модели); в такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции кривизна уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т. е. открытая модель остаётся открытой, замкнутая - замкнутой. Начальные стадии эволюции обеих моделей совершенно одинаковы: должно было существовать особое начальное состояние с бесконечной плотностью массы и бесконечной кривизной пространства и взрывное, замедляющееся со временем расширение.

Характер эволюции схематически показан на рис. 1 (замкнутая модель) и рис. 2 (открытая модель). По оси абсцисс отложено время, причём момент взрывного начала расширения принят за начало отсчёта времени (t = 0). По оси ординат отложен нек-рый масштабный фактор R, в качестве к-рого может быть принято, напр., расстояние между теми или иными двумя далёкими объектами (галактиками). Зависимость R = R (t) изображается на рис. сплошной линией; прерывистая линия - изменение кривизны в ходе эволюции (кривизна пропорциональна 1/R2). Заметим ещё, что относительная скорость изменения расстояний[33353e3c-1.jpg]Н есть не что иное, как постоянная (точнее, параметр) Хаббла. В начальный момент (t -> 0) фактор R -> 0, а параметр Хаббла Н -> 00 . Из космологич. ур-ний следует, что при заданном Н равная нулю кривизна может иметь место только ири строго определённой (критической) плотности массы ркр = 3 c2H2/G, где с - скорость света, G - гравитационная постоянная. Если р > ркр пространство замкнуто, при р <= ркр пространство является открытым.

Физика Вселенной. Указанные выше постулаты достаточны для суждений об общем характере эволюции и приводят, в частности, к выводу о чрезвычайно высокой начальной (при малых значениях t) плотности. Однако плотность не даёт исчерпывающей характеристики физич. состояния: нужно знать ещё, напр., темп-ру. Задание тем или иным путём характеристик начального состояния представляет третий постулат (гипотезу) релятивистской К., независимый от первых двух. Начиная с 60- 70-х гг. обычно принимается постулат "горячей" Вселенной (предполагается высокая начальная темп-pa). Приняв этот постулат, можно сделать неск. очень важных выводов. Во-первых, при очень малых значениях t не могли существовать не только молекулы или атомы, но даже и атомные ядра; существовала лишь нек-рая смесь разных элементарных частиц (включая фотоны и нейтрино). На основе физики элементарных частиц можно рассчитать состав такой смеси на разных этапах эволюции. Во-вторых, зная закон расширения, можно указать, когда существовали те или иные условия: плотность вещества изменяется обратно пропорционально R3 или t2, плотность излучения ещё быстрее - обратно пропорционально R4 и т. д. Поскольку расширение вначале к тому же идёт с большой скоростью, очевидно, что высокие плотность и темп-pa могли существовать только очень короткое время. Действительно, если при t = 0 плотность р = оо, то уже при t и 0,01 сек плотность упадёт до р ~ 1011 г/см3. Во Вселенной в это время существуют фотоны, электроны, позитроны, нейтрино и антинейтрино; нуклонов ещё очень мало. В результате последующих превращений получается смесь лёгких ядер (по-видимому, две трети водорода и одна треть гелия); все остальные химич. элементы формируются из них, причём намного позднее, в результате ядерных реакций в недрах звёзд. Оставшиеся фотоны и нейтрино на очень ранней стадии расширения перестают взаимодействовать с веществом и должны наблюдаться в настоящее время в виде

реликтового излучения, свойства к-рого можно предсказать на основе теории "горячей" Вселенной. В-третьих, хотя расширение вначале идёт очень быстро, процессы превращений элементарных частиц протекают несравненно быстрее, в результате чего устанавливается последовательность состояний термодинамического равновесия. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопич. параметрами (определяемыми скоростьюрасширения) и совершенно не зависит от предшествующей истории. Поэтому незнание того, что происходило при плотностях, намного превосходящих ядерную (т. е. за первые 10-4 сек расширения), не мешает делать более или менее достоверные суждения о более поздних состояниях, напр, начиная с t = 10-2 сек, когда состояние вещества является "обычным", известным совр. микрофизике.

Наблюдательная проверка. Выводы релятивистской К. имеют радикальный, революционный характер, и вопрос о степени их достоверности представляет большой общенаучный и мировоззренческий интерес. Наибольшее принципиальное значение имеют выводы о нестационарности (расширении) Вселенной, о высокой удельной энтропии ("горячая" Вселенная) и об искривлённости пространства. Несколько более частный характер имеют проблемы знака кривизны, а также степени однородности и изотропии Вселенной. Вывод о нестационарности надёжно подтверждён: космологич. красное смещение, наблюдаемое вплоть до z ~ 2 и больше, свидетельствует о том, что область Вселенной с линейными размерами порядка неск. млрд. пс расширяется, и это расширение длится по меньшей мере неск. млрд. лет (объекты, находящиеся на расстоянии 1 млрд. пс, мы видим такими, какими они были ок. 3 млрд. лет тому назад). Столь же основательное подтверждение нашла и концепция "горячей" Вселенной: в 1965 было открыто реликтовое радиоизлучение, причём его свойства оказались весьма близкими к предсказанным. Последующее детальное изучение позволило установить, что реликтовое излучение к тому же в высокой мере, с точностью до долей процента, изотропно. Это доказывает, что Вселенная на протяжении более чем 0,99 своей истории изотропна. Это, естественно, повышает доверие к однородным изотропным моделям, к-рые до этого рассматривались как весьма грубое приближение к действительности.

Наличие же кривизны пространства пока нельзя считать доказанным, хотя оно весьма вероятно, если учитывать подтверждение др. выводов релятивистской К. Кривизна непосредственно никак не может быть измерена. Косвенно она могла бы быть определена, если бы была известна средняя плотность массы или можно было бы определить более точно зависимость красного смещения от расстояния (отклонение от линейной зависимости). Астрономич. наблюдения приводят к значениям усреднённой плотности светящегося вещества ок. 10-31 г/см3. Определить плотность тёмного вещества, а тем более плотность энергии нейтрино гораздо труднее, и неопределённость суммарной плотности из-за этого весьма велика (она может быть, в частности, на два порядка больше усреднённой плотности звёздного вещества). Если принять совр. значение постоянной Хаббла Н = = 1,7*10-18 сек-1 то Ркр = 6*10-30г/см3. Таким образом, на основе имеющихся наблюдательных данных (10-31 < р < < 10-29) нельзя сделать никакого выбора между открытой (расширяющейся безгранично) и замкнутой (расширение в далёком будущем сменяется сжатием) моделью. Эта неопределённость никак не сказывается на общем характере прошлого и совр. расширения, но влияет на возраст Вселенной (длительность расширения) - величину и без того достаточно неопределённую. Если бы расширение происходило с постоянной скоростью, то время, истекшее с момента изначального

взрыва, составляло бы[33353e3c-2.jpg] = 6*1017сек = 18 млрд. лет. Но расширение, как видно из приведённых выше графиков, идёт с замедлением, поэтому время Т, истекшее с момента начала расширения, меньше T0 Так, при р = ркр имеем: T = 2/3T0 = 12 млрд. лет. Для Р > РКР, т. е. для замкнутых моделей, Т ещё меньше. С др. стороны, если космологич. постоянная не равна строго нулю, то существуют и др. возможности, напр, длительная (порядка 10 или более млрд. лет) задержка расширения в прошлом, и Т может составлять десятки миллиардов лет.

Нерешённые проблемы. Релятивистская К. объясняет наблюдаемое совр. состояние Вселенной, она предсказала неизвестные ранее явления. Но развитие К. поставило и ряд новых, крайне трудных проблем, к-рые ещё не решены. Так, для изучения состояния вещества с плотностями, намного порядков выше ядерной плотности, нужна совершенно новая физич. теория (предположительно, некий синтез существующей теории тяготения и квантовой теории). Для исследований же состояния вещества при бесконечной плотности (и бесконечной кривизне пространства - времени) пока нет даже надлежащих мате-матич. средств. Кроме всего прочего, в такой ситуации должна нарушаться непрерывность времени и вопрос о том, что было "до" t = 0, применительно к обычному (метрич.) понятию времени, лишён смысла; необходимо то или иное обобщённое понятие времени. В решении этой группы проблем делаются лишь первые шаги.

По мере развития теории, а также средств и методов наблюдений будет уточняться само понятие космологич. Вселенной. В рамках современной К. довольно естественно считать Метагалактику единственной. Но вопросы топологии пространства - времени разработаны ещё недостаточно для того, чтобы составить представление о всех возможностях, к-рые могут быть реализованы в природе. Это надо иметь в виду, в частности, и в связи с проблемой возраста Вселенной.

Не исключено, что столь же трудно будет объяснить зарядовую асимметрию во Вселенной: в нашем космич. окружении (во всяком случае, в пределах Солнечной системы, а вероятно, и в пределах всей Галактики) имеет место подавляющее количественное преобладание вещества над антивеществом. Между тем, согласно совр. теоретич. представлениям, вещество и антивещество совершенно равноправны. К. пока не даёт достаточно убедительного объяснения такого противоречия.

Пока нет также убедительной теории возникновения звёзд и галактик (пограничная проблема К. и космогонии). Эта проблема по меньшей мере столь же трудна, как и др. фундаментальные проблемы возникновения в совр. науке (возникновения планет, возникновения жизни). Существует и ряд др. нерешённых проблем К.

Лит.: Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика, ?., 1967; Наблюдательные основы космологии, Сб., М., 1965; ЗельмановА. Л., Космология, в кн.: Физический энциклопедический словарь, т. 2,М., 1962; Бесконечность и Вселенная, Сб., М., 1969; Peebles, P.J.E., Physical Cosmology, Princeton, 1972.

Г. И. Наан.


1320.htm
КОРРЕКТНЫЕ И НЕКОРРЕКТНЫЕ ЗАДАЧИ, классы матем. задач, к-рые различаются степенью определённости их решений. Многие матем. задачи состоят в том, что по исходным