загляните на купон-скидку или справочники: окна kbe, окна veka, окна rehau, остекление балкона, остекление лоджии, изготовление окон, монтаж окон, остекление, производство окон, металлопластиковые окна,окна пвх, пластиковые окна, установка окон, стеклопакеты и евроокна.



ВСЁ О СТРОИТЕЛЬСТВЕ, ПРОМЫШЛЕННОМ, ЖИЛОМ И НЕ ТОЛЬКО...:
ПОНЯТИЯ:

МОНТАЖ (франц. montage - подъём установка, сборка, от monter - поднимать), сборка и установка сооружений конструкций, технологического оборудования агрегатов, машин (см. Сборка машин, аппаратов, приборов и др. устройств и готовых частей и элементов.
МОНТАЖ в строительстве - основной производственный процесс, выполняемый при возведении зданий и сооружений или и реконструкции, в результате которого устанавливают в проектное положение строительные конструкции, инженерное технологическое оборудование и др. МОНТАЖ технологического оборудования включает также присоединение его к источникам энергоснабжения системам очистки и удаления отходов оснащение приборами, средствами автоматизации и контроля
.


СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хозяйственные единицы, основным видом деятельности которых является строительство новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отдельных очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я. К государственным СТРОИТЕЛЬНО-МОНТАЖНЫМ ОРГАНИЗАЦИЯМ относятся строительные и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроительные, заводостроительные и сельские строительные комбинаты; строительные, (монтажные) управления и приравненные к ним организации (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).
ПРОЕКТИРОВАНИЕ (от лат. projectus, буквально - брошенный вперёд), процесс создания проекта - прототипа, прообраза предполагаемого или возможного объекта, состояния. Различают этапы и стадии ПРОЕКТИРОВАНИЯ, характеризующиеся определённой спецификой. Предметная область ПРОЕКТИРОВАНИЯ постоянно расширяется. Наряду с традиционными видами ПРОЕКТИРОВАНИЯ (архитектурно-строительным, машиностроительным, технологическим и др.) начали складываться самостоятельные направления ПРОЕКТИРОВАНИЯ человеко-машинных систем (решающих, познающих, эвристических, прогнозирующих, планирующих, управляющих и т. п.) (см. Система "человек и машина"), трудовых процессов, организаций, экологическое, социальное, инженерно-психологич., генетическое ПРОЕКТИРОВАНИЕ и др. Наряду с дифференциацией ПРОЕКТИРОВАНИЯ идёт процесс его интеграции на основе выявления общих закономерностей и методов проектной деятельности.
ПРОМСТРОЙПРОЕКТ, проектный институт в ведении Госстроя СССР. Находится в Москве. Организован в 1933. В составе института архитектурно-строительные и конструкторские отделы; ПРОМСТРОЙПРОЕКТ возглавляет объединение "Союзхимстройниипроект" с проектными институтами в Киеве, Ростове-на-Дону, Тольятти, Алма-Ате. Разрабатывает проекты (архитектурно-строительные и сан.-технич. части) производственных зданий и сооружений крупнейших промышленных предприятий автомобильной, машиностроит., металлургич., химич. и др. отраслей пром-сти; схемы генеральных планов пром. узлов и упорядочения существующих пром. районов; мероприятия по повышению уровня индустриализации строительтсва за счёт унификации и типизации зданий, сооружений и конструкций и внедрения эффективных строит. материалов; нормативные документы и методич. указания по проектированию пром. зданий и сооружений. Периодически публикует реферативную информацию "Строительное проектирование промышленных предприятий". Награждён орденом Трудового Красного Знамени (1958)

Главная страница
Поиск по сайту
Оглавление страниц

Объяснение слов: словарь, справочник, информация. Строительство, экономика, промышленность - все сферы жизни: от А до Г, от Г до П и от П до Я

СФСР. Расположен в верховьях р. Ворскла (приток Днепра), в 27 км к С.-З. от Белгорода. Производство стройматериалов.

СТРОИТЕЛЬНАЯ АКУСТИКА, науч. дисциплина, изучающая вопросы защиты помещений, зданий и территорий населённых мест от шума архитектурно-планировочными и строительно-акустическими (конструктивными) методами. С. а. рассматривают и как отрасль прикладной акустики, и как раздел строительной физики. К архитектурно-планировочным методам С. а. относятся: рациональные (с точки зрения защиты от шума) объёмно-планировочные решения зданий и помещений; удаление источников шума от защищаемых объектов; оптимальная планировка микрорайонов, жилых районов, а также территорий пром. предприятий. Строительно-акустич. методы включают применение конструкций и устройств, обеспечивающих эффективное снижение уровня шума (см. Звукоизоляция, Звукопоглощающие конструкции), они тесно связаны с проблемой снижения шума от технологич., санитарно-технич. и инж. оборудования, средств транспорта, механизир. инструмента и бытовых приборов (во vy. случаях борьба с шумом прежде всего целесообразна непосредственно в источнике его возникновения). К задачам С. а. относят и вопросы исследований и разработки акустических материалов. Проблемы С. а. приобрели в совр. строительстве большое значение: мероприятия по борьбе с шумом обеспечивают улучшение санитарно-гигиенич. условий жизни населения, способствуют повышению производительности труда, эксплуатац. качеств и комфорта зданий.

С. а. как самостоят, науч. область возникла в нач. 30-х гг. 20 в. и получила интенсивное развитие с 50-х гг. в связи со значит, ростом числа и мощности источников шума внутри зданий (инж. и санитарно-технич. оборудование, радиоприёмники, телевизоры, магнитофоны, бытовые электрич. приборы и др.) и на территориях населённых мест (средства автомоо., возд. и ж.-д. транспорта), а также в связи с расширением масштабов применения индустриальных облегчённых ограждающих конструкций, обладающих сравнительно низкой звукоизолирующей способностью. Науч. исследования по С. а. проводились гл. обр. в направлении разработки теории звукоизоляции ограждающих конструкций и соответств. методов их расчёта и проектирования. Осн. тенденции совр. исследований в области С. а.- изыскание наиболее эффективных шумоглушащих и звукоизолирующих конструкций и устройств, совершенствование методов их расчёта, разработка облегчённых ограждающих конструкций с повышенной звукоизоляц. способностью и новых градостроит. принципов, способствующих защите жилой застройки от трансп. шума.

С. а. базируется на теоретич. положениях общей акустики, в ней используются экспериментальные методы исследований в лабораторных и натурных условиях (напр., метод моделирования при исследовании звукоизолирующей способности ограждающих конструкций и изучении распространения шума в помещениях, инж. коммуникациях, а также на территориях гор. застройки).

В СССР осн. н.-и. центром по проблемам С. а. является строительной физики институт. Вопросы С. а. занимают большое место на Междунар. акустич. конгрессах, проводимых Комиссией по акустике (ICA) Междунар. объединения теоретич. и прикладной акустики (IU PAP) при ЮНЕСКО. Ин-т строительной физики выпускает сборники научных трудов по вопросам С. а. В зарубежной печати статьи по С. а. публикуются в журналах "Applied acoustics" (Essex, с 1968), "Acoustical Society of America. Journal" (N. Y., с 1929) и "Larmbekamp-fung" (Baden-Baden, с 1957).

Лит.: Борьба с шумом, M., 1964; Заборов В. И., Теория звукоизоляции ограждающих конструкций, 2 изд., M., 1969; Ковригин С. Д., Захаров А. В., Герасимов А. И., Борьба с шумами в гражданских зданиях, M., 1969; Градостроительные меры борьбы с шумом, M., 1975. Г. Л. Осипов.

"СТРОИТЕЛЬНАЯ ГАЗЕТА", советская центральная газета, орган Гос. комитета Сов. Мин. СССР по делам стр-ва и ЦК профсоюза рабочих стр-ва и пром-сти строит, материалов. Выходит в Москве 3 раза в неделю. 1-й номер газеты под назв. "Постройка" вышел 23 апр. 1924, с 20 дек. 1937 газета выходила под назв. "Строительный рабочий"; в марте 1939 "Строительный рабочий" и "Архитектурная газета" были объединены в "Строительную газету". В июне 1941 издание газеты прервалось, выход её возобновился с 1 сент. 1954. Тираж (1975) 420 тыс. экз. Награждена орденом Трудового Красного Знамени (1974).

СТРОИТЕЛЬНАЯ КЕРАМИКА, материалы и изделия из керамики, применяемые в стр-ве. К С. к. относятся: стеновые материалы (кирпич, керамич. камни), материалы для отделки фасадов и облицовки внутр. поверхностей зданий (см. Отделочные материалы), кровельные материалы (черепица), санитарно-стронт. изделия (см. Санитарные приборы), керамич. трубы, кислотоупорные изделия и огнеупоры (футеровочные плиты, кирпич, скорлупы, сегменты и т. д.).

СТРОИТЕЛЬНАЯ МЕХАНИКА, наука о принципах и методах расчёта сооружений на прочность, жёсткость, устойчивость и колебания. Основные объекты изучения С. м.- плоские и пространственные стержневые системы и системы, состоящие из пластинок и оболочек. При расчёте сооружений учитывается целый ряд воздействий, главными из к-рых являются статич. и динамич. нагрузки и изменения тгмп-ры. Цель расчёта состоит в определении внутр. усилий, возникающих в элементах системы, в установлении перемещений её отд. точек и выяснении условий устойчивости и колебаний системы. В соответствии с результатами расчёта устанавливаются размеры сечений отд. элементов конструкций, необходимые для надёжной работы сооружения и обеспечивающие минимальные затраты материалов. Разрабатываемая в С. м. теория расчёта базируется на методах теоретической механики, сопротивления материалов, теорий упругости, пластичности и ползучести (см. Упругости теория, Пластичности теория, Ползучесть).

Иногда С. м. наз. теорией сооружений, имея при этом в виду весь комплекс указанных выше дисциплин, к-рые в совр. науке о прочности настолько тесно взаимосвязаны, что точное установление их границ затруднительно. Другое (теперь уже устаревшее) название С. м. - статика сооружений - возникло в то время, когда в С. м. не включались вопросы динамич. расчёта (см. Динамика сооружений).

Основные методы С. м. Для выполнения расчёта сооружения устанавливают его расчётную схему (модель). С этой целью из реального сооружения мысленно удаляют элементы, воспринимающие только местные нагрузки и практически не участвующие в работе сооружения в целом, и получают идеализированную, упрощённую схему (как бы скелет) сооружения. Элементы сооружения на расчётной схеме условно изображаются в виде линий, плоскостей, а также нек-рых кривых поверхностей. В соответствии с рассматриваемыми в С. м. системами сооружений различают расчётные схемы 3 видов: дискретные, состоящие из отд. стержней или элементов, связанных между собой в узлах (фермы, рамы, арки); континуальные, состоящие, как правило, из одного непрерывного элемента (напр., оболочки); дискретно-континуальные, содержащие наряду с континуальными частями также и отд. стержни (напр., оболочка, опирающаяся на колонны). В расчётах учитывается совместность (взаимосвязанность) деформаций всех элементов сооружения.

Встречающиеся на практике системы сооружений в зависимости от методики их расчёта подразделяют на 2 осн. типа: статически определимые системы, к-рые могут быть рассчитаны с использованием только ур-ний статики; статически неопределимые системы, для расчёта к-рых в дополнение к ур-ниям статики составляются ур-ния совместности деформаций.

При расчёте дискретных статически неопределимых систем (для к-рых справедлив принцип независимости действия сил) применяют 3 осн. метода: метод сил, метод перемещений и смешанный. При расчёте по методу сил часть связей (см. Связи в конструкциях) в выбранной расчётной схеме сооружения "отбрасывается", с тем чтобы превратить заданную систему в статически определимую и геометрически неизменяемую (основную) систему. "Отброшенные" связи заменяют силами (т. н. лишними неизвестными), для определения к-рых составляют (исходя из условия тождественности деформаций основной и заданной систем) канонические ур-ния. Найденные при решении этих ур-ний лишние неизвестные "прикладываются" вместе с нагрузкой к осн. системе как внеш. силы, после чего определяются (методами сопротивления материалов) внутр. усилия в элементах системы и перемещения её отд. точек. В отличие от метода сил, при методе перемещений осн. система получается из данной путём наложения дополнит, (лишних) связей, с тем чтобы превратить её в сочетание элементов, деформации и усилия к-рых заранее изучены. За лишние неизвестные принимаются перемещения по направлению лишних связей. Для их определения составляется система ур-ний, вытекающих из условия равенства нулю реакции в лишних связях. Смешанный метод представляет собой сочетание методов сил и перемещений; осн. система образуется путём удаления одних и наложения др. связей. Поэтому лишними неизвестными являются и силы, и перемещения.

При расчёте континуальных статически неопределимых систем за неизвестные принимают функции перемещений или усилий, для определения которых составляют необходимые дифференциальные ур-ния. В результате решения последних находят величины внутр. силовых факторов (усилий). Использование в расчётной практике ЭВМ позволяет применять для расчёта континуальных систем также и дискретные расчётные схемы. В этом случае континуальную систему разделяют на т. н. конечные элементы, к-рые соединяются между собой жёсткими или упругими связями. При расчёте систем с разделением их на конечные элементы применяется как метод сил, так и метод перемещений, причём, если выбор метода при расчёте традиц. способами связывался с кол-вом совместно решаемых ур-ний, то с появлением ЭВМ предпочтение, как правило, отдаётся методу перемещений, позволяющему проще определять коэфф. при неизвестных. Для определения перемещений упругих систем применяется формула Мора, полученная на базе осн. теорем С. м., и, в частности, обобщённого принципа возможных (виртуальных) перемещений (см. Возможных перемещении принцип).

При учёте пластических деформаций материала задача становится физически нелинейной, т. к. в этом случае принцип независимости действия сил неприменим. Встречаются также геометрически нелинейные системы, при расчёте к-рых вследствие значит, величины перемещений необходимо учитывать изменения геометрии системы и смещение нагрузки в процессе деформации. При расчёте нелинейных систем обычно применяется метод последоват. приближений, причём в пределах каждого приближения система считается упругой.

Важной задачей С. м. является изучение условий устойчивости и колебаний сооружений. При расчётах на устойчивость применяются статич., энергетич. и динамич. методы, с помощью к-рых определяются критические параметры, характеризующие совокупность действующих сил. Величины критич. параметров (в простейших случаях - критич. сил) зависят от геометрии сооружения, особенностей нагрузок и воздействий, а также от констант, характеризующих деформативность материала. Наиболее сложными являются расчёты сооружений на устойчивость при действии динамич. сил. Теория колебаний в С. м., помимо методов определения частот и форм колебаний сооружений, содержит разделы, посвящённые вопросам гашения вибраций, принципам и методам виброизоляции.

Использование ЭВМ позволяет широко применять при решении задач совр. С. м. методы линейной алгебры с матричной записью не только систем ур-ний, но и всех вычислений, связанных с определением силовых факторов и перемещений, критич. нагрузок и т. д. В связи с этим составляются спец. алгоритмы и программы с полной автоматизацией всех вычислит, процессов.

Историческая справка. На разных этапах развития С. м. методы расчёта сооружений в значительной степени определялись уровнем развития математики, механики и науки о сопротивлении материалов.

До кон. 19 в. в С. м. применялись графич. методы расчета, и наука о расчёте сооружений носила назв. "графическая статика". В нач. 20 в. графич. методы стали уступать место более совершенным - аналитическим, и примерно с 30-х гг. графич. методами практически перестали пользоваться. Аналитич. методы, зародившиеся в 18 -нач. 19 вв. на основе работ Л. Эйлера, Я. Бернулли, Ж. Лагранжа и С. Пуассона, были недоступны инженерным кругам и поэтому не нашли должного практического применения. Период интенсивного развития аналитич. методов наступил лишь во 2-й пол. 19 в., когда в широких масштабах развернулось строительство железных дорог, мостов, крупных пром. сооружений. Труды Дж. К. Максвелла, А. Кастильяно (Италия), Д. И. Журавского положили начало формированию С. м. как науки. Известный рус. учёный и инж.-строитель Л. Д. Проскуряков впервые (90-е гг.) ввёл понятие о линиях влияния и их применении при расчёте мостов на действие подвижной нагрузки. Приближённые методы расчёта арок были даны франц. учёным Брессом, а более точные методы разработаны X. С. Головиным. Существенное влияние на развитие теории расчёта статически неопределимых систем оказали работы К. О. Мора, предложившего универсальный метод определения перемещений (формула Мора). Большое науч. и практич. значение имели работы по динамике сооружений M. В. Остроградского, Дж. Рэлея, А. Сен-Венана. Благодаря исследованиям Ф. С. Ясинского, С. П. Тимошенко, A. H. Динника, H. В. Корноухова и др. значит, развитие получили методы расчёта сооружений на устойчивость. Крупные успехи в развитии всех разделов С. м. были достигнуты в СССР. Трудами сов. учёных A. H. Крылова, И. Г. Бубнова, Б. Г. Галёркина, И. M. Рабиновича, И. П. Прокофьева, П. Ф. Папковича, А. А. Гвоздева, H. С. Стрелецкого, В. 3. Власова, H. И. Безухова и др. были разработаны методы расчёта сооружений, получившие широкое распространение в проектной практике. В науч. учреждениях и вузах СССР созданы и успешно развиваются новые науч. направления в области С. м. Важным проблемам С. м. посвящены исследования В. В. Болотина (теория надёжности и статистич. методы в С. м.), И. И. Гольденблата (динамика сооружений), А. Ф. Смирнова (устойчивость и колебания сооружений) и др.

Проблемы современной С. м. Одной из актуальных задач С. м. является дальнейшее развитие теории надёжности сооружений на основе использования статистич. методов обработки данных о действующих нагрузках и их сочетаниях, о свойствах строит, материалов, а также о накоплении повреждений в сооружениях различных типов. Большое значение приобретают исследования по теории предельных состояний, имеющие целью переход к практич. расчёту сооружений на основе вероятностных методов. Важная задача С. м. - расчёт сооружений как единых пространств, систем, без расчленения их на отд. конструктивные элементы (балки, рамы, колонны, плиты и т. д.); она связана с необходимостью использования тех запасов несущей способности сооружений, к-рые не могут быть выявлены при поэлементном расчёте. Такой подход позволяет получать более точную картину распределения внутр. усилий в сооружениях и обеспечивает существ, экономию материалов. Расчёт сооружений как единых пространств, систем требует дальнейшего развития метода конечных элементов; последний даёт возможность рассчитывать весьма сложные сооружения на действие статич., динамич. (в т. ч. сейсмических) и др. нагрузок. Большой науч. интерес представляют: разработка методов решения физически и геометрически нелинейных задач, к-рые более полно учитывают реальные условия работы сооружений; изучение вопросов оптимального проектирования строит, конструкций с использованием ЭВМ; проведение исследований, связанных с разработкой теории разрушения сооружений(и, в частности, вопросов их "живучести"), что особенно важно для стр-ва в р-нах, подверженных землетрясениям.

Лит.: Тимошенко С. П., История науки о сопротивлении материалов с краткими сведениями по истории теории упругости и теории сооружений, пер. с англ., M-, 1957; Строительная механика в СССР. 1917-1967, M., 1969; Киселев В. А., Строительная механика, 2 изд , M-, 1969; Снитко H. К., Строительная механика, 2 изд , M., 1972; Б о л о т и н В. В., Г о л ьденблат И. И., Смирнов А. Ф., Строительная механика, 2 изд., M., 1972.

Под редакцией А. Ф. Смирнова.

"СТРОИТЕЛЬНАЯ МЕХАНИКА И РАСЧЁТ СООРУЖЕНИЙ", научно-технич. журнал, орган Госстроя СССР. Издаётся в Москве с 1959; выходит один раз в два месяца. Освещает актуальные теоретич. вопросы расчёта сооружений и строит, механики; публикует рекомендации по внедрению в практику проектирования и стр-ва науч. достижений и методов расчёта, обеспечивающих надёжность сооружений, повышение уровня индустриализации стр-ва; информирует об отечеств, и зарубежном опыте. Тираж (1976) ок. 7 тыс. экз.

СТРОИТЕЛЬНАЯ МЕХАНИКА КОРАБЛЯ, науч. дисциплина, рассматривающая методы расчёта прочности и жёсткости корпусных конструкций судна. Изучает воздействие внешних сил на конструкции, исследует напряжения и деформации, возникающие в них под действием заданной системы сил. С. м. к. базируется на положениях теоретич. механики, упругости теории и пластичности теории, надёжности, сопротивления материалов.

Вопросы прочности корабля впервые были рассмотрены Л. Эйлером. Основоположником С. м. к. считается И. Г. Бубнов. Значительный вклад в развитие С. м. к. внесли сов. учёные: A. H. Крылов, Ю. А. Шиманский, П. Ф. Папкович, В. В. Екимов, В. В. Новожилов. При решении задач С. м. к. обычно рассматривает упрощённую схему конструкции судна. Вследствие случайного характера внешних воздействий на судно в море (ветер, волны) в С. м. к. при определении расчётных внешних сил и обосновании коэфф. запаса прочности используются методы теории вероятностей, матем. статистики и теории случайных процессов, базирующиеся на статистич. материале, накопленном в результате долговрем. измерений нагрузок, напряжений и деформаций корпусных конструкций в рабочих условиях.

Методы С. м. к. используются при проектировании воен. кораблей и составляют основу соответств. разделов Правил постройки судов Регистра Союза CCP, регламентирующих прочность корпусов гражд. судов.

Лит.: Папкович П. Ф., Труды по строительной механике корабля, т. 1-4, M., 1962-63; Короткий Я. И., Ростовцев Д. M., Сивере H. Л-, Прочность корабля, Л., 1974. А. И. Максимаджи.

СТРОИТЕЛЬНАЯ СВЕТОТЕХНИКА, см. в ст. Светотехника.

СТРОИТЕЛЬНАЯ ТЕПЛОТЕХНИКА, строительная теплофизика, науч. дисциплина, рассматривающая процессы передачи тепла, переноса влага и проникновения воздуха в здания и их конструкции и разрабатывающая инж. методы расчёта этих процессов; раздел строительной физики. В С.т. используются данные смежных науч. областей (теории тепло- и массообмена, физ. химии, термодинамики необратимых процессов и др.), методы моделирования и теории подобия (в частности, для инж. расчётов переноса тепла и вещества), обеспечивающие достижение практич. эффекта при разнообразных внеш. условиях и различных соотношениях поверхностей и объёмов в зданиях. Большое значение в С. т. имеют натурныеи лабораторные исследования полей темп-ры и влажности в ограждающие конструкциях зданий, а также определение теплофиз. характеристик строит, материалов и конструкций.

Методы и выводы С. т. используются при проектировании ограждающих конструкций, к-рые предназначены для создания необходимых температурно-влажностных и сан.-гигиенич. условий (с учётом действия систем отопления, вентиляции и кондиционирования воздуха) в жилых, обществ, и производств, зданиях. Значение С. т. особенно возросло в связи с индустриализацией строительства, значит, увеличением масштабов применения (в разнообразных климатич. условиях) облегчённых конструкций и новых строительных материалов.

Задача обеспечения необходимых теплотехнич. качеств наружных ограждающих конструкций решается приданием им требуемых теплоустойчивости и сопротивления теплопередаче. Допустимая проницаемость конструкций ограничивается заданным сопротивлением воздухопроницанию. Нормальное влажностное состояние конструкций достигается уменьшением начального влагосодержания материала и устройством влагоиэоляции, а в слоистых конструкциях, кроме того,- целесообразным расположением конструктивных слоев, выполненных из материалов с различными свойствами.

Сопротивление теплопередаче должно быть достаточно высоким, с тем чтобы в наиболее холодный период года обеспечивать гигиенически допустимые температурные условия на поверхности конструкции, обращённой в помещение. Теплоустойчивость конструкций оценивается их способностью сохранять относит, постоянство темп-ры в помещениях при периодич. колебаниях темп-ры возд. среды, граничащей с конструкциями, и потока проходящего через них тепла. Степень теплоустойчивости конструкции в целом в значительной мере определяется физическими свойствами материала, из которого выполнен внеш. слой конструкции, воспринимающий резкие колебания темп-ры. При расчёте теплоустойчивости применяются методы С. т., основанные на решении дифференциальных ур-ний для периодически изменяющихся условий теплообмена. Нарушение одномерности передачи тепла внутри ограждающих конструкций в местах теплопроводных включений, в стыках панелей и углах стен вызывает нежелательное понижение темп-ры на поверхностях конструкций, обращённых в помещение, что требует соответств. повышения их теплозащитных свойств. Методы расчёта в этих случаях связаны с численным решением дифференциального ур-ния двумерного температурного поля (Лапласа уравнения).

Распределение темп-р в ограждающих конструкциях зданий изменяется и при проникновении внутрьконструкций холодного воздуха. Фильтрация воздуха происходит в основном через окна, стыки конструкций и др. неплотности, но в нек-рой степени и сквозь толщу самих ограждений. Разработаны соответств.методы расчёта изменений температурного поля при установившейся фильтрации воздуха. Сопротивление воздухопроницанию у всех элементов ограждений должно быть больше нормативных величин, установленных Строительными нормами и правилами.

При изучении влажностного состояния ограждающих конструкций в С. т. рассматриваются процессы переноса влаги, происходящие под влиянием разности потенциалов переноса. Перенос влаги в пределах гигроскопич. влажности материалов происходит в основном вследствие диффузии в парообразной фазе и в адсорбированном состоянии; за потенциал переноса в этом случае принимается парциальное давление водяного пара в воздухе, заполняющем поры материала. В СССР получил распространение графоаналитич.метод расчёта вероятности и кол-ва конденсирующейся внутри конструкций влаги при диффузии водяного пара в установившихся условиях. Более точное решение для не- , стационарных условий может быть получено решением дифференциальных ур-ний переноса влаги, в частности с помощью различных устройств вычислит, техники, в т. ч. использующих методы физ. аналогии (гидравлич. интеграторы).

Лит.: Л ы к о В.А. В., Теоретические основы строительной теплофизики, Минск, 1961; Богословский В. H., Строительная теплофизика, M., 1970; Фокин К. Ф., Строительная теплотехника ограждающих частей зданий, 4 изд., M., 1973; Ильинский В. M., Строительная теплофизика, M., 1974. В. M. Ильинский

СТРОИТЕЛЬНАЯ ФИЗИКА, совокупность науч. дисциплин (разделов прикладной физики), рассматривающих физ. явления и процессы, связанные со стр-вом и эксплуатацией зданий и сооружений, и разрабатывающих методы соответствующих инж. расчётов. Осн. и наиболее развитыми разделами С. ф. являются строительная теплотехника, строительная акустика, строительная светотехника (см. Светотехника), изучающие закономерности переноса тепла, передачи звука и света (т. е. явлений, непосредственно воспринимаемых органами чувств человека и определяющих гигиенич. качества окружающей его среды) с целью обеспечения в зданиях (сооружениях) необходимых температурно-влажностных, акустич. и светотехнич. условий. Получают развитие и др. разделы С. ф. - теория долговечности строит, конструкций и материалов, строит, климатология, строит, аэродинамика. Вопросы прочности, жёсткости и устойчивости зданий и сооружений рассматриваются в особом разделе прикладной физики - строительной механике.

При решении задач С. ф. используются: теоретич. расчёты на основе устанавливаемых общих закономерностей; методы моделирования, с помощью к-рых исследуемые процессы воспроизводятся или в изменённом масштабе, или на базе известных аналогий; лабораторные испытания элементов конструкций (напр., в камерах искусств, климата); натурные наблюдения и измерения в сооружённых объектах. Развитие С. ф. обеспечивается наличием теоретич. и экспериментальных данных совр. физики и физической химии.

Данные С. ф. служат основой для рационального проектирования строит, объектов, обеспечивающего соблюдение требуемых эксплуатац. условий в течение заданного срока их службы. Разрабатываемые в С. ф. методы расчёта и испытаний позволяют дать оценку качеству стр-ва (как на стадии проектирования, так и после возведения зданий и сооружений).

Становление С. ф. как науки относится к нач. 20 в. До этого времени вопросы С. ф. обычно решались инженерами и архитекторами на основе практического опыта. В СССР первые науч. лаборатории этого профиля были организованы в кон. 20-х-нач. 30-х гг. при Гос. ин-те сооружений (ГИС) и Центр, н.-и. ин-те пром. сооружений (ЦНИПС). В последующие годы важнейшие н.-и. работы по осн. разделам С. ф. были сосредоточены в Институте строительной техники (ныне - строительной физики инстwnyrri). Особенно интенсивное развитие С. ф. получила в связи со значит, увеличением объёмов стр-ва различных по назначению зданий с применением индустриальных облегчённых конструкций и новых материалов, требующих предварит, оценки их свойств. Сов. учёными впервые были разработаны теория теплоустойчивости ограждающих конструкций зданий (О. E. Власов), методы расчёта влажностного состояния конструкций (К. Ф. Фокин) и их воздухопроницаемости, выполнен ряд др. фундаментальных исследований по важнейшим проблемам С. ф., имеющим большое значение для совр. стр-ва.

Расширение масштабов полносборного строительства потребовало проведения комплексных исследований в области долговечности строит, конструкций и материалов. Происходящие в конструкциях процессы неустановившегося, изменяющегося по направлению теплообмена и, в гораздо большей степени, явления перемещения и замерзания влаги вызывают постепенное изменение структурно-механич. свойств материалов, что проявляется в их набухании, усадке, образовании микротрещин и постепенном необратимом разрушении. Температурные напряжения при неустановившемся теплообмене, фазовые переходы и особенно объёмно-напряжённое состояние материалов (при неравномерном распределении влаги) являются осн. причинами процесса постепенного нарушения прочности строит, конструкций и в значит, мере определяют их долговечность. Чрезмерное увлажнение материалов и конструкций содействует их ускоренному разрушению от мороза, коррозии, биол. процессов (см. Морозостойкость, Влагостойкость}.

Расчётные методы С. ф., а также осн. положения физико-химической механики, изучающей влияние физико-хим. процессов на деформации твёрдых тел, являются необходимым фундаментом для создания материалов с заданными свойствами и развития теории долговечности, особенно важной при массовом применении новых материалов и облегчённых индустриальных конструкций, не проверенных опытом многолетней эксплуатации. Структурно-механич. свойства строит, материалов (бетонов, кирпича и др.) зависят от процессов переноса тепла и влаги при обжиге, сушке, тепловлажностной обработке. Изменяя режимы технологич. процессов в соответствии с закономерностями целесообразного переноса тепла и вещества, можно существенно повысить качество материалов. T. о., расчётные методы С. ф. служат науч. основой и для совершенствования технологии произ-ва строит, материалов и изделий.

Разработка методов инж. расчёта долговрем. сопротивления конструкций зданий разрушающим физико-хим. воздействиям внутр. и наружной атмосферы связана с необходимостью изучения закономерностей изменения внутр. микроклимата помещений и внеш. климатич. условий. Внешние воздействия на здания и их конструкции рассматриваются самостоят, разделом С. ф. - строительной климатологией, развивающейся на основе достижений физики атмосферы и общей климатологии. В большинстве случаев воздействие климата является комплексным (совместное влияние темп-ры и ветра, осадков и ветра и т. п.). Интенсивному развитию строит, климатологии способствует увеличение объёмов стр-ва в разнообразных климатич. условиях.

Отд. разделом С. ф., изучающим воздействие на здания и сооружения ветра и др. потоков воздуха, возникающих при разности темп-р и давлений, является строительная аэродинамика. Учёт распределения аэродинамических давлений на внешних поверхностях важен для проектирования естеств. и искусств, (механич.) вентиляции, предотвращения местных снежных заносов (напр,, на кровле здания), а также для установления ветровых нагрузок на здания и сооружения. Особенности внутр. климата помещений зависят от их размещения в здании и аэродинамич. характеристик последнего, поскольку распределение темп-р и влажности в помещениях связано с условиями естеств. воздухообмена. Изучение аэродинамич. характеристик объектов стр-ва с различными геометрич. очертаниями и объёмами позволяет обеспечить хорошие эксплуатац. качества производств, и обществ, зданий, а также установить рациональные типы гор. застройки при различных климатич. условиях.

Перспективы дальнейшего развития С. ф. связаны с использованием новых средств и методов науч. исследований. Так, напр., структурно-механич. характеристики материалов и их влажностное состояние в конструкциях зданий изучаются с помощью ультразвука, лазерного излучения, гамма-лучей, с применением радиоактивных изотопов и т. д. При создании эффективных средств отопления и кондиционирования воздуха, а также ограждающих конструкций, характеризующихся малыми потерями тепла, находит применение полупроводниковая техника. Распределение темп-р на поверхностях конструкций, в возд. среде помещений и потоках воздуха исследуется методами моделирования и термографии на основе закономерностей интерференции света при различном тепловом состоянии среды.

Лит.: Строительная физика. Состояние и перспективы развития, M., 1961; Ильинский В. M., Проектирование ограждающих конструкций зданий (с учетом физико-климатических воздействий), 2 изд., M., 1964; Реттер Э. И., Стриженов С. И., Аэродинамика зданий, M., 1968. См. также лит. при статьях Строительная теплотехника. Строительная акустика, Светотехника. В. M. Ильинский.

СТРОИТЕЛЬНОГО И ДОРОЖНОГО МАШИНОСТРОЕНИЯ ИНСТИТУТ Всесоюзный научно-исследовательский (ВНИИстройдормаш), находится в Москве, в ведении Мин-ва строительного, дорожного и коммунального машиностроения СССР. Создан в 1947. Осуществляет н.-и. и опытно-конструкторские работы по созданию строит, и дорожных машин и оборудования, а также координацию разработок в этой области. В составе Ин-та филиал в г. Красноярске, центр, научно-испытательный полигон-филиал и опытный з-д в г. Ивантеевке Моск. обл. Ин-т имеет аспирантуру; учёному совету предоставлено право приёма к защите кандидатских диссертаций. Издаёт "Сборники трудов".

СТРОИТЕЛЬНОЕ ОБРАЗОВАНИЕ, высшее, среднее и профессионально-технич. образование, имеющее целью подготовку специалистов для проектирования, конструирования, строительства и эксплуатации зданий и сооружений различного назначения.

Строит, иск-во зародилось в глубокой древности. Подготовка строителей вначале осуществлялась под руководством мастеров непосредственно в процессе строительства различных сооружений, в Др. Греции и Др. Риме появились спец. школы (см. Архитектурное образование)

Истоки С. о. в России относятся к 10 в. Обучение мастеров-строителей осуществлялось непосредственно на стройке.

В 1724 по предписанию Петра I в Москве было создано неск. т. н. архитектурных команд, ученики к-рых изучали арифметику, черчение, рисование и получали практич. навыки по архитектуре, ремонту и перестройке зданий. По мере совершенствования мастерства их производили в сержанты (что давало право проектировать и строить), из сержантов - в гезели (производители работ).

M. Ф. Казаков основал в Москве архит. команду, к-рая в 1788-89 была реорганизована в Первое архит. уч-ще, а с 1814- в Моск. дворцовое архит. уч-ще.

В 1773 в Петербурге учреждено горное уч-ще (нынеЛенинградский горный институт), студенты к-рого изучали проектирование и стр-во каменных и деревянных плотин, шлюзов, фундаментов и т. д. В уч-ще в нач. 19 в. преподавал И. И. Свиязев - автор первого рус. руководства по архитектуре (с основами строит, иск-ва).

В горнозаводских школах Урала, особенно в Екатеринбургском уч-ще, кроме горного производства, изучались также механика, архитектура, фортификация и др. предметы строит, иск-ва.

Для подготовки инженеров по стр-ву дорог и искусств, сооружений в 1809 в Петербурге осн. Ин-т корпуса инженеров путей сообщения (ныне Ленинградский институт инженеров железнодорожного транспорта). В ин-те изучались математика, геодезия, рисовальное искусство и архитектура, производство строит, работ, основы механики и гидравлики, составление проектов и смет и др., проводилась практика по стр-ву. Ин-т окончили ставшие впоследствии известными учёными и инженерами, построившими крупные сооружения и создавшими научно-пед. школы: M. С. Волков (строительное иск-во), С. В. Кербедз и H. Ф. Ястржембский (организаторы механич. лаборатории по испытанию материалов), Ф. С. Ясинский (теория упругости), П. П. Мельников (прикладная механика), П. И. Собко,

Д. И. Журавский и H. А. Белелюбский (строит, механика).

Первым специализированным высшим уч. заведением по подготовке кадров для стр-ва инж. сооружений было Уч-ще гражд. инженеров, осн. в 1832 в Петербурге, с 1882 - Ин-т гражд. инженеров (ныне Ленинградский инженерно-строительный институт). Изучение теоретич. курсов сочеталось с практич. и лабораторными работами, курсовым проектированием, практикой на строит, объектах. В ин-те были созданы научно-пед. школы по проектированию и стр-ву жилых, гражд. и пром. зданий, сан.-технич. устройств и др. (В. В. Эвальд, С. Б. Лукашевич, В. А. Косяков, И. А. Евневич, А. К. Павловский и др.). В нач. 20 в. началась специализация в подготовке инженеров строит, профиля, и с 1905 ин-т стал выпускать инженеров-архитекторов, инженеров санитарной техники и дорожников.

В 1907 в Петерб. политехнич. ин-те открылось инженерно-строит. отделение (с гидротехнич. и сухопутно-дорожным подотделениями), где сформировались научно-пед. школы в области механики сыпучих тел, гидравлики и гидротехники (С. П. Белзецкий, В. Л. Кирпичёв, Б. Г. Галёркин, К. Г. Ризенкампф, Б. А. Бахметев, H. H. Павловский).

В 1902 в Москве акад. И. А. Фомин организовал первые женские строит, курсы, а в 1905 проф. H. В. Марковников открыл женские техническо-строит. курсы. В 1909 эти курсы объединились и в 1916 были преобразованы в женский политехнич. ин-т с архит. и инженерно-строит. отделениями (после Окт. революции 1917- Моск. политехнич. ин-т, затем Моск. ин-т гражд. инженеров). Выпускникам ин-та присваивались звания инженера-архитектора или инженера-строителя.

Существенную роль в становлении С. о. сыграли осн. в Москве в 1905 ср. строит, уч-ще и в 1907 ср. строит, уч-ще Товарищества инженеров и педагогов, членами к-рого были В.Н.Образцов, Е.Р.Бриллинг, И. В. Рыльский, A. E. Ильин и др. (в 1921 на базе этих уч-щ создан Моск. практич. строит, ин-т, объединённый затем с Моск. ин-том гражд. инженеров).

В 1907 в Моск. высшем технич. уч-ще (МВТУ) введено преподавание курса архитектуры (проектирование, конструирование и строительство зданий и инж. сооружений), в 1918 открылся инженерно-строит. ф-т с архитектурным отделением (в 1924 в состав ф-та влился Моск. ин-т гражд. инженеров), к-рый стал центром подготовки инженеров-строителей. Значит, вклад в развитие С. о. внёс осн. в 1896 Моск. ин-т инженеров ж.-д. транспорта (МИИТ).

В 30-е гг. созданы самостоят, инженерно-строительные институты и в ряде политехнич. ин-тов - строит, ф-ты; началась подготовка инженеров-строителей на вечерних и заочных ф-тах. Учебные планы строит, специальностей (пром. и гражд. стр-во, гидротехнич. стр-во речных сооружений, гидроэлектростанций, портов и водных путей, теплогазоснабжение и вентиляция, водоснабжение и канализация, стр-во ж.-д. путей и путевое X-BO, автомоб. дороги, мосты и тоннели, произ-во строит, изделий и конструкций и др.) включают общенаучные дисциплины (обществ, науки - история КПСС, марксистско-ленинская философия, политич. экономия, науч. коммунизм; основы сов. права, иностр. язык, высшая математика, физика, химия, теоретич. механика и др.), общеинженерные (инж. геодезия, сопротивление материалов, строит, механика, электротехника, теплотехника, гидравлика и др.) и специальные (архитектура, строит, конструкции, водоснабжение, канализация, теплогазоснабжение, вентиляция, технология строит, произ-ва, организация, планирование и экономика стр-ва, автоматика и автоматизир. системы управления, вычислит, техника и т. д.). За время обучения студенты выполняют 15-20 курсовых проектов и работ в зависимости от специализации, проходят уч. и производств, практику (до 25 недель). Обучение заканчивается защитой дипломного проекта (дипломной работы). Сроки обучения - 5-6 лет. Выпускники вузов проходят по месту работы стажировку сроком до одного года.

Подготовка техников-строителей ведётся (1975) в дневной, вечерней и заочной формах обучения по 22 (более узким, чем в вузах) специальностям в 221 строительном и 252 др. отраслевых (нестроительных) техникумах (см. Среднее специальное образование).

Резкое увеличение масштабов и темпов строит, произ-ва обусловило дальнейшее совершенствование С. о. и увеличение выпуска специалистов. В 1950 строит, специальностям в вузах обучалось 37,1 тыс. чел. и выпуск составил 4,9 тыс. чел., в 1955 соответственно - 232,8 тыс. и 14,6 тыс., в 1974- 340,1 тыс. и 21,3 тыс. чел. В техникумах в 1950 обучалось 79,6 тыс. чел. и выпуск составил 36,2 тыс. чел., в 1965 соответственно- 247,7 тыс. и 38,7 тыс., в 1974 - 424,4 тыс. и 87,9 тыс. чел. В 1975 в вузы принято 71,9 тыс. чел., в техникумы - 76,2 тыс. чел.

Широко известны в СССР и за рубежом рус. научно-пед. школы по строит, механике и строит, конструкциям (H. С. Стрелецкий, А. Ф. Лолейт, А. А. Гвоздев, В. 3. Власов, H. M. Беляев, А. Ф. Смирнов, И. П. Прокофьев, И. M. Рабинович, E. О. Патон, Л .И. Онищик, Г. Г. Карлсен, К. В. Сахновский и др.), по гидротехнич. стр-ву и гидравлике (Б. E. Веденеев, В. E. Ляхницкий, M. M. Гришин, P. P. Чугаев и др.), по механике грунтов (H. M. Герсеванов, В. А. Флорин, H. Я. Денисов, H. А. Цытович, H. H. Маслов и др.).

Проф.-технич. С. о. осуществляется по более чем 150 профессиям и специальностям (арматурщик-электросварщик, каменщик-монтажник конструкций, машинист кранов, маляр, столяр, штукатур-облицовщик-плиточник и др.). Квалифицированных рабочих для стр-ва и пром-сти строит, материалов в 1974 готовили св. 1,5 тыс. профессионально-технических учебных заведений (ок. 650 тыс. уч-ся); в 1975 строит, уч-ща выпустили св. 370 тыс. чел., приём - 405 тыс. чел. Научные и научно-пед. кадры по инженерно-строит. специальностям готовятся в аспирантуре, во втузах и н.-и. ин-тах.

Системы С. о. в др. социалистич. странах во многом сходны с сов. системой, однако профили подготовки специалистов несколько шире, чем в СССР. Напр., в ПНР инженеров-строителей готовят по специальностям - наземное стр-во, гидротехника, санитарное оборудование и др., в ГДР - инженерное стр-во, технология строит, индустрии, гидротехнич. стр-во и водное X-BO и др. Подготовку инженеров-строителей осуществляют спец. ф-ты политехнич. вузов и ун-тов (напр., в ЧССР - инженерно-строит. ? ты политехнич. ин-тов в Праге, Брно и др.; в СФРЮ - ф-ты ун-тов в Белграде, Загребе, Любляне, Сараево и др.), в нек-рых странах есть специальные строит, вузы (напр., в ГДР - в Лейпциге и Веймаре).

В капиталистических странах подготовка инженеров-строителей ведётся в специализированных вузах и на ф-тах ун-тов. Крупнейшим центром С. о. во Франции является Нац. школа мостов и дорог в Париже (осн. в 1747, готовит также инженеров по гражд. стр-ву, строит, конструкциям и гор. благоустройству). Период обучения в вузах Франции, как правило, делится на 3 цикла. После 2-го цикла присуждается академич. степень инженера (срок обучения 4 года), а после 3-го - доктора 3-го цикла или доктора-инженера в зависимости от перечня экзаменов и дипломной работы. Общий срок обучения примерно 6 лет. В Японии инженеры-строители подготавливаются в течение 4 лет, как правило, на инж. ф-тах ун-тов и колледжей в порядке специализации; в Великобритании - в течение 3 лет в ун-тах, высших технич. колледжах (напр., строит, школа Лондонского совета в Ламбете - Брикстоне, Ливерпульский строит, колледж) и ряде политехнич. колледжей. В США в 1974 инженеры-строители готовились в более чем 200 ун-тах и колледжах (срок обучения 4 г.). После защиты дипломной работы выпускник вузов Великобритании, США, Японии и нек-рых др. получает степень бакалавра (архитектуры, инженерных наук, технологии), далее может сдать дополнительные экзамены и защитить вторую дипломную работу (диссертацию) на получение степени магистра наук (1-1,5г.), доктора философии, доктора технич. наук или доктора наук (2-3 г.). Однако эти степени не дают права на самостоят, проектирование сооружений и производство строит, работ; оно приобретается после 2 - 5 лет работы на производстве на инженерно-технич. должностях в сдачи комплексных экзаменов (по фундаментальным и спец. дисциплинам). В Массачусетсском технологич. ин-те (США) получившие степень бакалавра в течение 2 лет дополнит, обучения могут получить академич. степень инженера. В ФРГ инженеры-строители готовятся в гос. строит, школах или инж. школах по стр-ву, а также в Высших технич. уч-щах (Брауншвейг, Дармштадт, Карлсруэ, Мюнхен и Штутгарт). В инж. школах преподавание ведётся с практич. уклоном в тесной связи с процессом производства. Курс обучения (3 г.) заканчивается сдачей гос. экзаменов на звание инженера. Для поступления в эти школы требуйся стаж практич. работы по специальности. Срок обучения, включая сдачу экзаменов на диплом инженера, - 4-5 лет. Практически студенты завершают весь уч. план за 5-6 лет. Это образование позволяет выпускнику работать самостоятельно как на стройке, так и в проектных и н.-и. организациях. Выполнившему и защитившему диссертацию присуждается академич. степень доктора-инженера (эквивалентная квалификации инженера, присваиваемой в сов.вузах).

А. И. Богомолов.

СТРОИТЕЛЬНОЕ СТЕКЛО, изделия из стекла, применяемые для остекления световых проемов, устройства прозрачных и полупрозрачных перегородок, облицовки и отделки стен, лестниц и др. частей зданий. К С. с. относят также тепло- и звукоизоляционные материалы (пеностекло и стекловата) и стеклянные трубы.

С. с. подразделяют на листовое оконное стекло, полированное, витринное, армированное, узорчатое, цветное, профилированное, стеклоблоки, стеклопакеты, марблит, коврово-мозаичное, увиолевое стекло, стемалит и нек-рые др. виды.

Оконное С. с. вырабатывается в виде плоских листов размером от 400 X 400 до 1600 X 2200 мм и толщиной от 2 до 6 мч', плотность 2470-2500 кг/л3, ср. прочность при симметричном изгибе 40 Мн/н2 (400 кгс/см2), светопропускание 84-87%.

Полированное С. с. обладает миним. оптич. искажениями, применяется для остекления витрин и оконных проёмов в обществ, зданиях, для зеркал и т. д. Из полированного закалённого стекла толщиной 10-20 мм изготовляют стеклянные полотна для дверей размером от 2200 X X 700 до 2600 Х 1040 мм.

Узорчатое С. с. имеет с одной стороны рифлёную поверхность, предназначается для рассеяния света. Размеры его от 400 Х 400 до 1200 X 1800 мм при толщине 3-6,5 мм. Узорчатое С. с. с матовым или "морозным" рисунком используют для остекления лестничных клеток, внутр. перегородок.

Цветное С. с. может быть окрашенным по всей толщине или состоять из 2 слоев - осн. бесцветного и тонкого цветного: применяют для витражей, декорирования мебели, остекления зданий.

Профилированное С. с. - стекло с профилем швеллерного или коробчатого типа (стекор). Применяется как стеновой материал (гаражи, киоски, автобусные остановки и т. д.), толщина 6 мм, светопропускание 0,6 - 0,75%.

Марблит - прокатанное глушёное цветное С. с. для облицовки стен внутр. помещений пром. и обществ, зданий.

Стеклянные трубы применяются в качестве трубопроводов на заводах хим. и пищ. пром-сти иве. х-ве; характеризуются повышенной коррозионной стойкостью в сравнении с металлическими. Потери на трение при протекании жидкости в стеклянных трубах на 22% ниже, чем у новых чугунных, и на 6,5% ниже, чем у новых стальных. С. т. выпускаются с внутр. диаметром от 38 до 200 мм.

Лит.: Технология стекла, 4 изд., M., 1967; Бондарев К. Т., Стекло в строительстве, К., 1969. M. H. Павлушкин.

СТРОИТЕЛЬНОЙ ФИЗИКИ ИНСТИTУT научно-исследовательский, находится в Москве, в ведении Госстроя СССР. Основан в 1944 под назв. НИИ строит, техники (с 1957 - НИИ строит, физики и ограждающих конструкций, совр. назв.- с 1964). Ин-т осуществляет теоретич. и эксперимент, исследования в области строит, теплотехники, акустики и светотехники. Имеет очную и заочную аспирантуру; учёному совету предоставлено право приёма к защите кандидатских диссертаций. Публикует науч. труды, материалы науч. конференций.

СТРОИТЕЛЬНО-МОНТАЖНЫЕ ОРГАНИЗАЦИИ в СССР, организационно обособленные производственно-хоз. единицы, осн. видом деятельности к-рых является стр-во новых, реконструкция, капитальный ремонт и расширение действующих объектов (предприятий, их отд. очередей, пусковых комплексов, зданий, сооружений), а также монтаж оборудовани я.

К гос. С.-м. о. относятся строит, и монтажные тресты (тресты-площадки, тресты гор. типа, территориальные, союзные специализированные тресты); домостроит., заводостроит. и сел. строит, комбинаты; строит, (монтажные) управления и приравненные к ним орг-ции (напр., передвижные механизированные колонны, строительно-монтажные поезда и др.).

Колхозы создают на долевых началах межколхозные строит, орг-ции (см. Межколхозные объединения).

С.-м. о. осуществляют работы подрядным или хоз. способом. При подрядном способе строит, производств, функции принимают на себя постоянно действующие хозрасчётные подрядные С.-м. о., выполняющие работы для предприятий и организаций-заказчиков по договорам. При хоз. способе строит, работы выполняются непосредственно С.-м. о. застройщика для собственных нужд.

Объём строительно-монтажных работ для гос. и кооперативных предприятий и организаций (без колхозов) в 1974 составил 54,7 млрд. руб., в т. ч. строительно-монтажные работы, выполненные подрядным способом,- 50,0 млрд. руб.

По виду работ С.-м. о. подразделяются на общестроительные (выполняют комплекс осн. видов монтажных, каменных, бетонных, плотничных и др. массовых работ) и специализированные (выполняют лишь один вид или комплекс однородных работ). По характеру договорных отношений С.-м. о. делятся на генподрядные и субподрядные.

Осн. организац. формы С.-м. о.- строит, и монтажные тресты, домостроит., заводостроит. и сел. комбинаты. В 1974 кол-во строит, и монтажных трестов с годовым объёмом работ, выполняемых собств. силами, до 5 млн. руб. составило 4%, св. 5 до 9 млн. руб. -16% , св. 9 до 15 млн. руб.- 31%, св. 15 млн. руб. - 49%.

В условиях хозяйств, реформы происходит процесс централизации важнейших функций на уровне треста. Строительные управления в ряде случаев освобождаются от нек-рых хоз. функций (бухгалтерского учёта, планирования, заключения договоров и т. п.). Из органа управления трест фактически превращается в организацию, непосредственно обеспечивающую выполнение строительно-монтажных работ, т. е. становится первичной организацией.

Производств, структура С.-м. о. определяется составом и направленностью подразделений, осуществляющих общестроит. и спец. работы, изготовление строительных конструкций и полуфабрикатов, эксплуатацию и ремонт строит, машин и механизмов и др. виды обслуживания.

Процесс концентрации, специализации С.-м. о. вызывает обособление подразделений по эксплуатации и ремонту крупных строит, машин и механизмов, автомобильного и ж.-д. транспорта, производственно-технологич. комплектации и пром. предприятий стройиндустрии.

Перспективным направлением развития С.-м. о. является их дальнейшее укрупнение на основе создания территориальных строительно-монтажных, проектно-строительных, научно-производств. и др. типов объединений. В ведении таких объединений могут находиться не только строит, подразделения, предприятия и х-ва строительной индустрии, подразделения механизации, автотранспорта, но также проектные, конструкторские и науч. организации. Это создаёт реальную возможность внедрения в произ-во совр. научных достижений, повышения уровня концентрации, развития специализации, кооперирования и комбинирования, применения автоматизированных систем управления в строительстве.

Лит.: Народное хозяйство СССР в 1974, M., 1975; Экономика строительства, под ред. Б. Я. Ионаса, M., 1973; Хозяйственная реформа в строительстве, M., 1973; Серов В. M., Фалькевич H. А., Организация управления в строительстве (объединения, тресты, СМУ), M., 1974.

Б. С. Боев, В. M. Ильин.

"СТРОИТЕЛЬНЫЕ И ДОРОЖНЫЕ МАШИНЫ", ежемесячный научно-технич. и производств, журнал, орган Мин-ва строит., дорожного и коммунального машиностроения СССР. Издаётся в Москве с 1956 (до 1961 выходил под назв. "Строительное и дорожное машиностроение"). Журнал освещает вопросы научно-технич. прогресса, теоретич. исследований и опытно-конструкторских работ в строительном и дорожном машиностроении; публикует статьи по вопросам надёжности, эксплуатации, технич. обслуживания и ремонта машин, информац. и др. материалы. Тираж (1976) св. 17 тыс. экз.

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ, несущие и ограждающие конструкции зданий и сооружений.

Классификация и области применения. Разделение С. к. по функциональному назначению на несущие и ограждающие в значит, мере условно. Если такие конструкции, как арки, фермы или рамы, являются только несущими, то панели стен и покрытий, оболочки, своды, складки и т. п. обычно совмещают ограждающие и несущие функции, что отвечает одной из важнейших тенденций развития совр. С. к. В зависимости от расчётной схемы несущие С. к. подразделяют на плоские (напр., балки, фермы, рамы) и пространственные (оболочки, сроды, купола и т. п.). Пространственные конструкции характеризуются более выгодным (по сравнению с плоскими) распределением усилий и, соответственно, меньшим расходом материалов; однако их изготовление и монтаж во мн. случаях оказываются весьма трудоёмкими. Новые типы пространств, конструкций, напр. т. н. структурные конструкции из прокатных профилей на болтовых соединениях, отличаются как экономичностью, так и сравнит, простотой изготовления и монтажа. По виду материала различают след. осн. типы С. к.: бетонные и железобетонные (см. Железобетонные конструкции и изделия), стальные конструкции, каменные конструкции, деревянные конструкции.

Бетонные и железобетонные конструкции - наиболее распространённые (как по объёму, так и по областям применения). Для совр. стр-ва особенно характерно применение железобетона в виде сборных конструкций индустриального изготовления, используемых при возведении жилых, обществ, и производств, зданий и мн. пнж. сооружений. Рациональные области применения монолитного железобетона - гидротехнич. сооружения, дорожные и аэродромные покрытия, фундаменты под пром. оборудование, резервуары, башни, элеваторы и т. п. Спец. виды бетона и железобетона используют при стр-ве сооружений, эксплуатируемых при высоких и низких темп-pax или в условиях химически агрессивных сред (тепловые агрегаты, здания и сооружения чёрной и цветной металлургии, хим. пром-сти и др.) Уменьшение массы, снижение стоимости и расхода материалов в железобетонных конструкциях возможны на основе использования высокопрочных бетонов и арматуры, роста произ-ва предварительно напряжённых конструкций, расширения областей применения лёгких и ячеистых бетонов.

Стальные конструкции применяются гл. обр. для каркасов большепролётных зданий и сооружений, для цехов с тяжёлым крановым оборудованием, домен, резервуаров большой ёмкости, мостов, сооружений башенного типа и др. Области применения стальных и железобетонных конструкций в ряде случаев совпадают. При этом выбор типа конструкций производится с учётом соотношения их стоимостей, а также в зависимости от р-на стр-ва и местонахождения предприятий строит, индустрии. Существ, преимущество стальных конструкций (по сравнению с железобетонными) - их меньшая масса. Этим определяется целесообразность их применения в р-нах с высокой сейсмичностью, труднодоступных областях Крайнего Севера, пустынных и высокогорных р-нах и т. п. Расширение объёмов применения сталей высокой прочности и экономичных профилей проката, а также создание эффективных пространств, конструкций (в т. ч. из тонколистовой стали) позволят значительно снизить вес зданий и сооружений.

Осн. область применения каменных конструкций - стены и перегородки. Здания из кирпича, природного камня, мелких блоков и т. п. в меньшей степени удовлетворяют требованиям индустриального строительства, чем крупнопанельные здания (см. в статье Крупнопанельные конструкции). Поэтому их доля в общем объёме стр-ва постепенно снижается. Однако применение высокопрочного кирпича, армокаменных и т. н. комплексных конструкций (кам. конструкций, усиленных стальной арматурой или железобетонными элементами) позволяет значительно увеличить несущую способность зданий с кам. стенами, а переход от ручной кладки к применению кирпичных и керамич. панелей заводского изготовления - существенно повысить степень индустриализации стр-ва и снизить трудоёмкость возведения зданий из каменных материалов.

Осн. направление в развитии совр. деревянных конструкций - переход к конструкциям из клеёной древесины. Возможность индустриального изготовления и получения конструктивных элементов необходимых размеров посредством склеивания определяет их преимущества по сравнению с деревянными конструкциями др. видов. Несущие и ограждающие клеёные конструкции находят широкое применение в с.-х. стр-ве.

В совр. стр-ве значит, распространение получают новые типы индустриальных конструкций - асбестоцементные изделия и конструкции, пневматические строительные конструкции, конструкции из лёгких сплавов и с применением пластических масс. Их осн. достоинства - низкая удельная масса и возможность заводского изготовления на механизированных поточных линиях. Лёгкие трёхслойные панели (с обшивками из профилированной стали, алюминия, асбестоцемента и с пластмассовыми утеплителями) начинают применяться в качестве ограждающих конструкций взамен тяжёлых железобетонных и керамзитобетонных панелей.

Требования, предъявляемые к С. к. С точки зрения эксплуатац. требований С. к. должны отвечать своему назначению, быть огнестойкими и коррозиеустойчивыми, безопасными, удобными и экономичными в эксплуатации. Масштабы и темпы массового стр-ва предъявляют к С. к. требования индустриальности их изготовления (в заводских условиях), экономичности (как по стоимости, так и по расходу материалов), удобства транспортировки и быстроты монтажа на строит, объекте. Особое значение имеет снижение трудоёмкости - как при изготовлении С. к., так и в процессе возведения из них зданий и сооружений. Одна из важнейших задач совр. стр-ва - снижение массы С. к. на основе широкого применения лёгких эффективных материалов и совершенствования конструктивных решений.

РасчётС. к. Строит, конструкции должны быть рассчитаны на прочность, устойчивость и колебания. При этом учитываются силовые воздействия, к-рым конструкции подвергаются при эксплуатации (внеш. нагрузки, собств. вес), влияние темп-ры, усадки, смещения опор и т. д., а также усилия, возникающие при транспортировке и монтаже С. к. В СССР осн. методом расчёта С. к. является метод расчёта по предельным состояниям, утверждённый Госстроем СССР для обязательного применения с 1 янв. 1955. До этого С. к. рассчитывали в зависимости от применяемых материалов по допускаемым напряжениям (металлические и деревянные) или по разрушающим усилиям (бетонные, железобетонные, каменные и армокаменные). Гл. недостаток этих методов - использование в расчётах единого (для всех действующих нагрузок) коэфф. запаса прочности, не позволявшего правильно оценивать величину изменчивости различных по своему характеру нагрузок (постоянных, временных, снеговых, ветровых и т. д.) и предельную несущую способность конструкций. Кроме того, метод расчёта по допускаемым напряжениям не учитывал пластической стадии работы конструкции, что приводило к неоправданному перерасходу материалов.

При проектировании того или иного здания (сооружения) оптимальные типы С. к. и материалы для них выбираются в соответствии с конкретными условиями стр-ва и эксплуатации здания, с учётом необходимости использования местных материалов и сокращения трансп. расходов. При проектировании объектов массового стр-ва, как правило, применяются типовые С. к. и унифицированные габаритные схемы сооружений.

Лит.: Байков В. H., Строиг и н С. Г., Ермолова Д. И., Строительные конструкции, M., 1970; Строительные нормы и правила, ч. 2, раздел А, гл. 10. Строительные конструкции и основания, M-, 1972; Строительные конструкции, под ред. A. M. Овечкина и P. Л. Маиляна, 2 изд., M., 1974. Г. Ш. Подольский.

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ, природные и искусств, материалы и изделия, используемые при стр-ве и ремонте зданий и сооружений. Различия в назначении и условиях эксплуатации зданий (сооружений) определяют разнообразные требования к С. м. и их обширную номенклатуру. Различают 2 осн. категории С. м.: общего назначения (напр., цемент, бетон, лесоматериалы), применяемые при возведении или изготовлении разнообразных строит, конструкций, и спец. назначения (напр., акустич., теплоизо-ляц., огнеупорные материалы). По степени готовности С. м. условно делят на собственно С. м. (вяжущие материалы, заполнители и т. д.) и ст